On the Learnability of Physically Unclonable Functions

Nonfiction, Computers, Advanced Computing, Theory, Artificial Intelligence, General Computing
Cover of the book On the Learnability of Physically Unclonable Functions by Fatemeh Ganji, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Fatemeh Ganji ISBN: 9783319767178
Publisher: Springer International Publishing Publication: March 24, 2018
Imprint: Springer Language: English
Author: Fatemeh Ganji
ISBN: 9783319767178
Publisher: Springer International Publishing
Publication: March 24, 2018
Imprint: Springer
Language: English

This book addresses the issue of Machine Learning (ML) attacks on Integrated Circuits through Physical Unclonable Functions (PUFs). It provides the mathematical proofs of the vulnerability of various PUF families, including Arbiter, XOR Arbiter, ring-oscillator, and bistable ring PUFs, to ML attacks. To achieve this goal, it develops a generic framework for the assessment of these PUFs based on two main approaches. First, with regard to the inherent physical characteristics, it establishes fit-for-purpose mathematical representations of the PUFs mentioned above, which adequately reflect the physical behavior of these primitives. To this end, notions and formalizations that are already familiar to the ML theory world are reintroduced in order to give a better understanding of why, how, and to what extent ML attacks against PUFs can be feasible in practice. Second, the book explores polynomial time ML algorithms, which can learn the PUFs under the appropriate representation. More importantly, in contrast to previous ML approaches, the framework presented here ensures not only the accuracy of the model mimicking the behavior of the PUF, but also the delivery of such a model.

 

Besides off-the-shelf ML algorithms, the book applies a set of algorithms hailing from the field of property testing, which can help to evaluate the security of PUFs. They serve as a “toolbox”, from which PUF designers and manufacturers can choose the indicators most relevant for their requirements. Last but not least, on the basis of learning theory concepts, the book explicitly states that the PUF families cannot be considered as an ultimate solution to the problem of insecure ICs. As such, it provides essential insights into both academic research on and the design and manufacturing of PUFs.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book addresses the issue of Machine Learning (ML) attacks on Integrated Circuits through Physical Unclonable Functions (PUFs). It provides the mathematical proofs of the vulnerability of various PUF families, including Arbiter, XOR Arbiter, ring-oscillator, and bistable ring PUFs, to ML attacks. To achieve this goal, it develops a generic framework for the assessment of these PUFs based on two main approaches. First, with regard to the inherent physical characteristics, it establishes fit-for-purpose mathematical representations of the PUFs mentioned above, which adequately reflect the physical behavior of these primitives. To this end, notions and formalizations that are already familiar to the ML theory world are reintroduced in order to give a better understanding of why, how, and to what extent ML attacks against PUFs can be feasible in practice. Second, the book explores polynomial time ML algorithms, which can learn the PUFs under the appropriate representation. More importantly, in contrast to previous ML approaches, the framework presented here ensures not only the accuracy of the model mimicking the behavior of the PUF, but also the delivery of such a model.

 

Besides off-the-shelf ML algorithms, the book applies a set of algorithms hailing from the field of property testing, which can help to evaluate the security of PUFs. They serve as a “toolbox”, from which PUF designers and manufacturers can choose the indicators most relevant for their requirements. Last but not least, on the basis of learning theory concepts, the book explicitly states that the PUF families cannot be considered as an ultimate solution to the problem of insecure ICs. As such, it provides essential insights into both academic research on and the design and manufacturing of PUFs.

More books from Springer International Publishing

Cover of the book Delivering Aid Without Government by Fatemeh Ganji
Cover of the book Electric and Plug-In Hybrid Vehicles by Fatemeh Ganji
Cover of the book Fictions of Friendship in the Eighteenth-Century Novel by Fatemeh Ganji
Cover of the book Evolutionary Biology: Biodiversification from Genotype to Phenotype by Fatemeh Ganji
Cover of the book Philip Pettit: Five Themes from his Work by Fatemeh Ganji
Cover of the book Urban Planning in the Global South by Fatemeh Ganji
Cover of the book PowerFactory Applications for Power System Analysis by Fatemeh Ganji
Cover of the book Police Brutality, Misconduct, and Corruption by Fatemeh Ganji
Cover of the book Advancing Entrepreneurship in the United Arab Emirates by Fatemeh Ganji
Cover of the book New Trends in Medical and Service Robotics by Fatemeh Ganji
Cover of the book Inclusive Robotics for a Better Society by Fatemeh Ganji
Cover of the book Photonics by Fatemeh Ganji
Cover of the book Marketing and American Consumer Culture by Fatemeh Ganji
Cover of the book Chronic Illness Care by Fatemeh Ganji
Cover of the book Numerical Simulation for Next Generation Thermal Power Plants by Fatemeh Ganji
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy