Author: | Chongyang Liu, Zhaohua Gong | ISBN: | 9783662437933 |
Publisher: | Springer Berlin Heidelberg | Publication: | September 11, 2014 |
Imprint: | Springer | Language: | English |
Author: | Chongyang Liu, Zhaohua Gong |
ISBN: | 9783662437933 |
Publisher: | Springer Berlin Heidelberg |
Publication: | September 11, 2014 |
Imprint: | Springer |
Language: | English |
The book presents, in a systematic manner, the optimal controls under different mathematical models in fermentation processes. Variant mathematical models – i.e., those for multistage systems; switched autonomous systems; time-dependent and state-dependent switched systems; multistage time-delay systems and switched time-delay systems – for fed-batch fermentation processes are proposed and the theories and algorithms of their optimal control problems are studied and discussed. By putting forward novel methods and innovative tools, the book provides a state-of-the-art and comprehensive systematic treatment of optimal control problems arising in fermentation processes. It not only develops nonlinear dynamical system, optimal control theory and optimization algorithms, but can also help to increase productivity and provide valuable reference material on commercial fermentation processes.
The book presents, in a systematic manner, the optimal controls under different mathematical models in fermentation processes. Variant mathematical models – i.e., those for multistage systems; switched autonomous systems; time-dependent and state-dependent switched systems; multistage time-delay systems and switched time-delay systems – for fed-batch fermentation processes are proposed and the theories and algorithms of their optimal control problems are studied and discussed. By putting forward novel methods and innovative tools, the book provides a state-of-the-art and comprehensive systematic treatment of optimal control problems arising in fermentation processes. It not only develops nonlinear dynamical system, optimal control theory and optimization algorithms, but can also help to increase productivity and provide valuable reference material on commercial fermentation processes.