Polymer Membranes for Fuel Cells

Nonfiction, Science & Nature, Science, Chemistry, Technical & Industrial, Technology, Power Resources
Cover of the book Polymer Membranes for Fuel Cells by , Springer US
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9780387735320
Publisher: Springer US Publication: July 15, 2010
Imprint: Springer Language: English
Author:
ISBN: 9780387735320
Publisher: Springer US
Publication: July 15, 2010
Imprint: Springer
Language: English

From the late-1960’s, perfluorosulfonic acid (PFSAs) ionomers have dominated the PEM fuel cell industry as the membrane material of choice. The “gold standard’ amongst the many variations that exist today has been, and to a great extent still is, DuPont’s Nafion® family of materials. However, there is significant concern in the industry that these materials will not meet the cost, performance, and durability requirementsnecessary to drive commercialization in key market segments – es- cially automotive. Indeed, Honda has already put fuel cell vehicles in the hands of real end users that have home-grown fuel cell stack technology incorporating hydrocarbon-based ionomers. “Polymer Membranes in Fuel Cells” takes an in-depth look at the new chem- tries and membrane technologies that have been developed over the years to address the concerns associated with the materials currently in use. Unlike the PFSAs, which were originally developed for the chlor-alkali industry, the more recent hydrocarbon and composite materials have been developed to meet the specific requirements of PEM Fuel Cells. Having said this, most of the work has been based on derivatives of known polymers, such as poly(ether-ether ketones), to ensure that the critical requirement of low cost is met. More aggressive operational requi- ments have also spurred the development on new materials; for example, the need for operation at higher temperature under low relative humidity has spawned the creation of a plethora of new polymers with potential application in PEM Fuel Cells.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

From the late-1960’s, perfluorosulfonic acid (PFSAs) ionomers have dominated the PEM fuel cell industry as the membrane material of choice. The “gold standard’ amongst the many variations that exist today has been, and to a great extent still is, DuPont’s Nafion® family of materials. However, there is significant concern in the industry that these materials will not meet the cost, performance, and durability requirementsnecessary to drive commercialization in key market segments – es- cially automotive. Indeed, Honda has already put fuel cell vehicles in the hands of real end users that have home-grown fuel cell stack technology incorporating hydrocarbon-based ionomers. “Polymer Membranes in Fuel Cells” takes an in-depth look at the new chem- tries and membrane technologies that have been developed over the years to address the concerns associated with the materials currently in use. Unlike the PFSAs, which were originally developed for the chlor-alkali industry, the more recent hydrocarbon and composite materials have been developed to meet the specific requirements of PEM Fuel Cells. Having said this, most of the work has been based on derivatives of known polymers, such as poly(ether-ether ketones), to ensure that the critical requirement of low cost is met. More aggressive operational requi- ments have also spurred the development on new materials; for example, the need for operation at higher temperature under low relative humidity has spawned the creation of a plethora of new polymers with potential application in PEM Fuel Cells.

More books from Springer US

Cover of the book Domestic Violence and Maternal and Child Health by
Cover of the book The Psychobiology of Consciousness by
Cover of the book Nonlinear Theory of Electroelastic and Magnetoelastic Interactions by
Cover of the book LIMS by
Cover of the book Child Rearing in the Home and School by
Cover of the book Optimization and Control of Bilinear Systems by
Cover of the book Three Patients by
Cover of the book Transfusion Medicine: Quo Vadis? What Has Been Achieved, What Is to Be Expected by
Cover of the book Engineering Approaches to Mechanical and Robotic Design for Minimally Invasive Surgery (MIS) by
Cover of the book Design Review by
Cover of the book Scalable Performance Signalling and Congestion Avoidance by
Cover of the book Sexual Perversion by
Cover of the book Poincaré Plot Methods for Heart Rate Variability Analysis by
Cover of the book The Evolution of Mammalian Characters by
Cover of the book Focal Controlled Drug Delivery by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy