Author: | Vishram S. Pandit, Woong Hwan Ryu, Myoung Joon Choi | ISBN: | 9780132596961 |
Publisher: | Pearson Education | Publication: | October 13, 2010 |
Imprint: | Prentice Hall | Language: | English |
Author: | Vishram S. Pandit, Woong Hwan Ryu, Myoung Joon Choi |
ISBN: | 9780132596961 |
Publisher: | Pearson Education |
Publication: | October 13, 2010 |
Imprint: | Prentice Hall |
Language: | English |
Foreword by Joungho Kim
The Hands-On Guide to Power Integrity in Advanced Applications, from Three Industry Experts
In this book, three industry experts introduce state-of-the-art power integrity design techniques for today’s most advanced digital systems, with real-life, system-level examples. They introduce a powerful approach to unifying power and signal integrity design that can identify signal impediments earlier, reducing cost and improving reliability.
After introducing high-speed, single-ended and differential I/O interfaces, the authors describe on-chip, package, and PCB power distribution networks (PDNs) and signal networks, carefully reviewing their interactions. Next, they walk through end-to-end PDN and signal network design in frequency domain, addressing crucial parameters such as self and transfer impedance. They thoroughly address modeling and characterization of on-chip components of PDNs and signal networks, evaluation of power-to-signal coupling coefficients, analysis of Simultaneous Switching Output (SSO) noise, and many other topics.
Coverage includes
Power Integrity for I/O Interfaces will be an indispensable resource for everyone concerned with power integrity in cutting-edge digital designs, including system design and hardware engineers, signal and power integrity engineers, graduate students, and researchers.
Foreword by Joungho Kim
The Hands-On Guide to Power Integrity in Advanced Applications, from Three Industry Experts
In this book, three industry experts introduce state-of-the-art power integrity design techniques for today’s most advanced digital systems, with real-life, system-level examples. They introduce a powerful approach to unifying power and signal integrity design that can identify signal impediments earlier, reducing cost and improving reliability.
After introducing high-speed, single-ended and differential I/O interfaces, the authors describe on-chip, package, and PCB power distribution networks (PDNs) and signal networks, carefully reviewing their interactions. Next, they walk through end-to-end PDN and signal network design in frequency domain, addressing crucial parameters such as self and transfer impedance. They thoroughly address modeling and characterization of on-chip components of PDNs and signal networks, evaluation of power-to-signal coupling coefficients, analysis of Simultaneous Switching Output (SSO) noise, and many other topics.
Coverage includes
Power Integrity for I/O Interfaces will be an indispensable resource for everyone concerned with power integrity in cutting-edge digital designs, including system design and hardware engineers, signal and power integrity engineers, graduate students, and researchers.