Predictive Econometrics and Big Data

Business & Finance, Economics, Econometrics, Nonfiction, Computers, Advanced Computing, Artificial Intelligence, General Computing
Cover of the book Predictive Econometrics and Big Data by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319709420
Publisher: Springer International Publishing Publication: November 30, 2017
Imprint: Springer Language: English
Author:
ISBN: 9783319709420
Publisher: Springer International Publishing
Publication: November 30, 2017
Imprint: Springer
Language: English

This book presents recent research on predictive econometrics and big data. Gathering edited papers presented at the 11th International Conference of the Thailand Econometric Society (TES2018), held in Chiang Mai, Thailand, on January 10-12, 2018, its main focus is on predictive techniques – which directly aim at predicting economic phenomena; and big data techniques – which enable us to handle the enormous amounts of data generated by modern computers in a reasonable time. The book also discusses the applications of more traditional statistical techniques to econometric problems.

Econometrics is a branch of economics that employs mathematical (especially statistical) methods to analyze economic systems, to forecast economic and financial dynamics, and to develop strategies for achieving desirable economic performance. It is therefore important to develop data processing techniques that explicitly focus on prediction. The more data we have, the better our predictions will be. As such, these techniques are essential to our ability to process huge amounts of available data.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book presents recent research on predictive econometrics and big data. Gathering edited papers presented at the 11th International Conference of the Thailand Econometric Society (TES2018), held in Chiang Mai, Thailand, on January 10-12, 2018, its main focus is on predictive techniques – which directly aim at predicting economic phenomena; and big data techniques – which enable us to handle the enormous amounts of data generated by modern computers in a reasonable time. The book also discusses the applications of more traditional statistical techniques to econometric problems.

Econometrics is a branch of economics that employs mathematical (especially statistical) methods to analyze economic systems, to forecast economic and financial dynamics, and to develop strategies for achieving desirable economic performance. It is therefore important to develop data processing techniques that explicitly focus on prediction. The more data we have, the better our predictions will be. As such, these techniques are essential to our ability to process huge amounts of available data.

More books from Springer International Publishing

Cover of the book Feed-in Tariffs and the Economics of Renewable Energy by
Cover of the book Mathematical Analysis, Probability and Applications – Plenary Lectures by
Cover of the book Yellow Tourism by
Cover of the book Comprehensive Energy Management - Safe Adaptation, Predictive Control and Thermal Management by
Cover of the book Paradox Lost by
Cover of the book Engineering Challenges for Sustainable Underground Use by
Cover of the book Recent Advances in Stem Cells by
Cover of the book Search for Flavor-Changing Neutral Current Top Quark Decays t → Hq, with H → bb̅ , in pp Collisions at √s = 8 TeV with the ATLAS Detector by
Cover of the book Comparative and Evolutionary Genomics of Angiosperm Trees by
Cover of the book Rights of the Child by
Cover of the book Recent Advances in Soft Computing by
Cover of the book Migration, Temporality, and Capitalism by
Cover of the book Advances in Cryptology – EUROCRYPT 2019 by
Cover of the book VoIP Technology: Applications and Challenges by
Cover of the book Holistic Simulation of Geotechnical Installation Processes by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy