Probability, Markov Chains, Queues, and Simulation

The Mathematical Basis of Performance Modeling

Nonfiction, Science & Nature, Mathematics, Applied, Statistics
Cover of the book Probability, Markov Chains, Queues, and Simulation by William J. Stewart, Princeton University Press
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: William J. Stewart ISBN: 9781400832811
Publisher: Princeton University Press Publication: July 6, 2009
Imprint: Princeton University Press Language: English
Author: William J. Stewart
ISBN: 9781400832811
Publisher: Princeton University Press
Publication: July 6, 2009
Imprint: Princeton University Press
Language: English

Probability, Markov Chains, Queues, and Simulation provides a modern and authoritative treatment of the mathematical processes that underlie performance modeling. The detailed explanations of mathematical derivations and numerous illustrative examples make this textbook readily accessible to graduate and advanced undergraduate students taking courses in which stochastic processes play a fundamental role. The textbook is relevant to a wide variety of fields, including computer science, engineering, operations research, statistics, and mathematics.

The textbook looks at the fundamentals of probability theory, from the basic concepts of set-based probability, through probability distributions, to bounds, limit theorems, and the laws of large numbers. Discrete and continuous-time Markov chains are analyzed from a theoretical and computational point of view. Topics include the Chapman-Kolmogorov equations; irreducibility; the potential, fundamental, and reachability matrices; random walk problems; reversibility; renewal processes; and the numerical computation of stationary and transient distributions. The M/M/1 queue and its extensions to more general birth-death processes are analyzed in detail, as are queues with phase-type arrival and service processes. The M/G/1 and G/M/1 queues are solved using embedded Markov chains; the busy period, residual service time, and priority scheduling are treated. Open and closed queueing networks are analyzed. The final part of the book addresses the mathematical basis of simulation.

Each chapter of the textbook concludes with an extensive set of exercises. An instructor's solution manual, in which all exercises are completely worked out, is also available (to professors only).

  • Numerous examples illuminate the mathematical theories
  • Carefully detailed explanations of mathematical derivations guarantee a valuable pedagogical approach
  • Each chapter concludes with an extensive set of exercises
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Probability, Markov Chains, Queues, and Simulation provides a modern and authoritative treatment of the mathematical processes that underlie performance modeling. The detailed explanations of mathematical derivations and numerous illustrative examples make this textbook readily accessible to graduate and advanced undergraduate students taking courses in which stochastic processes play a fundamental role. The textbook is relevant to a wide variety of fields, including computer science, engineering, operations research, statistics, and mathematics.

The textbook looks at the fundamentals of probability theory, from the basic concepts of set-based probability, through probability distributions, to bounds, limit theorems, and the laws of large numbers. Discrete and continuous-time Markov chains are analyzed from a theoretical and computational point of view. Topics include the Chapman-Kolmogorov equations; irreducibility; the potential, fundamental, and reachability matrices; random walk problems; reversibility; renewal processes; and the numerical computation of stationary and transient distributions. The M/M/1 queue and its extensions to more general birth-death processes are analyzed in detail, as are queues with phase-type arrival and service processes. The M/G/1 and G/M/1 queues are solved using embedded Markov chains; the busy period, residual service time, and priority scheduling are treated. Open and closed queueing networks are analyzed. The final part of the book addresses the mathematical basis of simulation.

Each chapter of the textbook concludes with an extensive set of exercises. An instructor's solution manual, in which all exercises are completely worked out, is also available (to professors only).

More books from Princeton University Press

Cover of the book The Known, the Unknown, and the Unknowable in Financial Risk Management by William J. Stewart
Cover of the book The Closed Commercial State by William J. Stewart
Cover of the book The Hidden Agenda of the Political Mind by William J. Stewart
Cover of the book Does God Belong in Public Schools? by William J. Stewart
Cover of the book Rethinking Language, Mind, and Meaning by William J. Stewart
Cover of the book How to Do Things with Books in Victorian Britain by William J. Stewart
Cover of the book The Sun's Influence on Climate by William J. Stewart
Cover of the book Lawlessness and Economics by William J. Stewart
Cover of the book Margins and Metropolis by William J. Stewart
Cover of the book Female Acts in Greek Tragedy by William J. Stewart
Cover of the book Weak Courts, Strong Rights by William J. Stewart
Cover of the book No Enchanted Palace by William J. Stewart
Cover of the book Field Guide to the Fishes of the Amazon, Orinoco, and Guianas by William J. Stewart
Cover of the book How Round Is Your Circle? by William J. Stewart
Cover of the book The Strength in Numbers by William J. Stewart
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy