Programmed Cells from Basic Neuroscience to Therapy

Nonfiction, Science & Nature, Science, Biological Sciences, Cytology, Health & Well Being, Medical, Specialties, Internal Medicine, Neuroscience
Cover of the book Programmed Cells from Basic Neuroscience to Therapy by , Springer Berlin Heidelberg
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783642366482
Publisher: Springer Berlin Heidelberg Publication: May 13, 2013
Imprint: Springer Language: English
Author:
ISBN: 9783642366482
Publisher: Springer Berlin Heidelberg
Publication: May 13, 2013
Imprint: Springer
Language: English

The recent advances in Programming Somatic Cell (PSC) including induced Pluripotent Stem Cells (iPS) and Induced Neuronal phenotypes (iN), has changed our experimental landscape and opened new possibilities. The advances in PSC have provided an important tool for the study of human neuronal function as well as neurodegenerative and neurodevelopmental diseases in live human neurons in a controlled environment. For example, reprogramming cells from patients with neurological diseases allows the study of molecular pathways particular to specific subtypes of neurons such as dopaminergic neurons in Parkinson’s Disease, Motor neurons for Amyolateral Sclerosis or myelin for Multiple Sclerosis. Detecting disease-specific molecular signatures in live human brain cells, opens possibilities for early intervention therapies and new diagnostic tools. Importantly, once the neurological neural phenotype is detected in vitro, the so-called “disease-in-a-dish” approach allows for the screening of drugs that can ameliorate the disease-specific phenotype. New therapeutic drugs could either act on generalized pathways in all patients or be patient-specific and used in a personalized medicine approach. However, there are a number of pressing issues that need to be addressed and resolved before PSC technology can be extensively used for clinically relevant modeling of neurological diseases. Among these issues are the variability in PSC generation methods, variability between individuals, epigenetic/genetic instability and the ability to obtain disease-relevant subtypes of neurons . Current protocols for differentiating PSC into specific subtypes of neurons are under development, but more and better protocols are needed. Understanding the molecular pathways involved in human neural differentiation will facilitate the development of methods and tools to enrich and monitor the generation of specific subtypes of neurons that would be more relevant in modeling different neurological diseases.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The recent advances in Programming Somatic Cell (PSC) including induced Pluripotent Stem Cells (iPS) and Induced Neuronal phenotypes (iN), has changed our experimental landscape and opened new possibilities. The advances in PSC have provided an important tool for the study of human neuronal function as well as neurodegenerative and neurodevelopmental diseases in live human neurons in a controlled environment. For example, reprogramming cells from patients with neurological diseases allows the study of molecular pathways particular to specific subtypes of neurons such as dopaminergic neurons in Parkinson’s Disease, Motor neurons for Amyolateral Sclerosis or myelin for Multiple Sclerosis. Detecting disease-specific molecular signatures in live human brain cells, opens possibilities for early intervention therapies and new diagnostic tools. Importantly, once the neurological neural phenotype is detected in vitro, the so-called “disease-in-a-dish” approach allows for the screening of drugs that can ameliorate the disease-specific phenotype. New therapeutic drugs could either act on generalized pathways in all patients or be patient-specific and used in a personalized medicine approach. However, there are a number of pressing issues that need to be addressed and resolved before PSC technology can be extensively used for clinically relevant modeling of neurological diseases. Among these issues are the variability in PSC generation methods, variability between individuals, epigenetic/genetic instability and the ability to obtain disease-relevant subtypes of neurons . Current protocols for differentiating PSC into specific subtypes of neurons are under development, but more and better protocols are needed. Understanding the molecular pathways involved in human neural differentiation will facilitate the development of methods and tools to enrich and monitor the generation of specific subtypes of neurons that would be more relevant in modeling different neurological diseases.

More books from Springer Berlin Heidelberg

Cover of the book Nitrates III by
Cover of the book Analog Filters in Nanometer CMOS by
Cover of the book Kryptographische Systeme by
Cover of the book The Deductive Spreadsheet by
Cover of the book Currents in Industrial Mathematics by
Cover of the book The Black Sea Encyclopedia by
Cover of the book Proceedings of the FISITA 2012 World Automotive Congress by
Cover of the book Metalation of Azoles and Related Five-Membered Ring Heterocycles by
Cover of the book Calreticulin by
Cover of the book Reviews of Physiology, Biochemistry and Pharmacology 161 by
Cover of the book Meiobenthos in the Sub-equatorial Pacific Abyss by
Cover of the book Internet der Dinge in der Intralogistik by
Cover of the book Basic and Clinical Research on Renal Cell Carcinoma by
Cover of the book Arbeitsbuch der Angewandten Statistik by
Cover of the book Unzerstörbar by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy