Programming Elastic MapReduce

Using AWS Services to Build an End-to-End Application

Nonfiction, Computers, Advanced Computing, Parallel Processing, Database Management, Data Processing
Cover of the book Programming Elastic MapReduce by Kevin Schmidt, Christopher Phillips, O'Reilly Media
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Kevin Schmidt, Christopher Phillips ISBN: 9781449364045
Publisher: O'Reilly Media Publication: December 10, 2013
Imprint: O'Reilly Media Language: English
Author: Kevin Schmidt, Christopher Phillips
ISBN: 9781449364045
Publisher: O'Reilly Media
Publication: December 10, 2013
Imprint: O'Reilly Media
Language: English

Although you don’t need a large computing infrastructure to process massive amounts of data with Apache Hadoop, it can still be difficult to get started. This practical guide shows you how to quickly launch data analysis projects in the cloud by using Amazon Elastic MapReduce (EMR), the hosted Hadoop framework in Amazon Web Services (AWS).

Authors Kevin Schmidt and Christopher Phillips demonstrate best practices for using EMR and various AWS and Apache technologies by walking you through the construction of a sample MapReduce log analysis application. Using code samples and example configurations, you’ll learn how to assemble the building blocks necessary to solve your biggest data analysis problems.

  • Get an overview of the AWS and Apache software tools used in large-scale data analysis
  • Go through the process of executing a Job Flow with a simple log analyzer
  • Discover useful MapReduce patterns for filtering and analyzing data sets
  • Use Apache Hive and Pig instead of Java to build a MapReduce Job Flow
  • Learn the basics for using Amazon EMR to run machine learning algorithms
  • Develop a project cost model for using Amazon EMR and other AWS tools
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Although you don’t need a large computing infrastructure to process massive amounts of data with Apache Hadoop, it can still be difficult to get started. This practical guide shows you how to quickly launch data analysis projects in the cloud by using Amazon Elastic MapReduce (EMR), the hosted Hadoop framework in Amazon Web Services (AWS).

Authors Kevin Schmidt and Christopher Phillips demonstrate best practices for using EMR and various AWS and Apache technologies by walking you through the construction of a sample MapReduce log analysis application. Using code samples and example configurations, you’ll learn how to assemble the building blocks necessary to solve your biggest data analysis problems.

More books from O'Reilly Media

Cover of the book SQL and Relational Theory by Kevin Schmidt, Christopher Phillips
Cover of the book HTML5 Media by Kevin Schmidt, Christopher Phillips
Cover of the book Using SVG with CSS3 and HTML5 by Kevin Schmidt, Christopher Phillips
Cover of the book Fire Phone: Out of the Box by Kevin Schmidt, Christopher Phillips
Cover of the book Developing with Google+ by Kevin Schmidt, Christopher Phillips
Cover of the book OpenShift for Developers by Kevin Schmidt, Christopher Phillips
Cover of the book QuickBooks 2015: The Missing Manual by Kevin Schmidt, Christopher Phillips
Cover of the book Learning the Korn Shell by Kevin Schmidt, Christopher Phillips
Cover of the book Web Database Applications with PHP and MySQL by Kevin Schmidt, Christopher Phillips
Cover of the book Google: The Missing Manual by Kevin Schmidt, Christopher Phillips
Cover of the book Photoshop Elements 8 for Windows: The Missing Manual by Kevin Schmidt, Christopher Phillips
Cover of the book Managing Kubernetes by Kevin Schmidt, Christopher Phillips
Cover of the book The Computer User's Survival Guide by Kevin Schmidt, Christopher Phillips
Cover of the book Bootstrap by Kevin Schmidt, Christopher Phillips
Cover of the book RESTful .NET by Kevin Schmidt, Christopher Phillips
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy