Protein Conformational Dynamics

Nonfiction, Science & Nature, Science, Biological Sciences, Biochemistry, Health & Well Being, Medical
Cover of the book Protein Conformational Dynamics by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319029702
Publisher: Springer International Publishing Publication: January 20, 2014
Imprint: Springer Language: English
Author:
ISBN: 9783319029702
Publisher: Springer International Publishing
Publication: January 20, 2014
Imprint: Springer
Language: English

This book discusses how biological molecules exert their function and regulate biological processes, with a clear focus on how conformational dynamics of proteins are critical in this respect. In the last decade, the advancements in computational biology, nuclear magnetic resonance including paramagnetic relaxation enhancement, and fluorescence-based ensemble/single-molecule techniques have shown that biological molecules (proteins, DNAs and RNAs) fluctuate under equilibrium conditions. The conformational and energetic spaces that these fluctuations explore likely contain active conformations that are critical for their function. More interestingly, these fluctuations can respond actively to external cues, which introduces layers of tight regulation on the biological processes that they dictate. A growing number of studies have suggested that conformational dynamics of proteins govern their role in regulating biological functions, examples of this regulation can be found in signal transduction, molecular recognition, apoptosis, protein / ion / other molecules translocation and gene expression.

 

On the experimental side, the technical advances have offered deep insights into the conformational motions of a number of proteins. These studies greatly enrich our knowledge of the interplay between structure and function.

 

On the theoretical side, novel approaches and detailed computational simulations have provided powerful tools in the study of enzyme catalysis, protein / drug design, protein / ion / other molecule translocation and protein folding/aggregation, to name but a few. This work contains detailed information, not only on the conformational motions of biological systems, but also on the potential governing forces of conformational dynamics (transient interactions, chemical and physical origins, thermodynamic properties). New developments in computational simulations will greatly enhance our understanding of how these molecules function in various biological events.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book discusses how biological molecules exert their function and regulate biological processes, with a clear focus on how conformational dynamics of proteins are critical in this respect. In the last decade, the advancements in computational biology, nuclear magnetic resonance including paramagnetic relaxation enhancement, and fluorescence-based ensemble/single-molecule techniques have shown that biological molecules (proteins, DNAs and RNAs) fluctuate under equilibrium conditions. The conformational and energetic spaces that these fluctuations explore likely contain active conformations that are critical for their function. More interestingly, these fluctuations can respond actively to external cues, which introduces layers of tight regulation on the biological processes that they dictate. A growing number of studies have suggested that conformational dynamics of proteins govern their role in regulating biological functions, examples of this regulation can be found in signal transduction, molecular recognition, apoptosis, protein / ion / other molecules translocation and gene expression.

 

On the experimental side, the technical advances have offered deep insights into the conformational motions of a number of proteins. These studies greatly enrich our knowledge of the interplay between structure and function.

 

On the theoretical side, novel approaches and detailed computational simulations have provided powerful tools in the study of enzyme catalysis, protein / drug design, protein / ion / other molecule translocation and protein folding/aggregation, to name but a few. This work contains detailed information, not only on the conformational motions of biological systems, but also on the potential governing forces of conformational dynamics (transient interactions, chemical and physical origins, thermodynamic properties). New developments in computational simulations will greatly enhance our understanding of how these molecules function in various biological events.

More books from Springer International Publishing

Cover of the book Charge-Sharing SAR ADCs for Low-Voltage Low-Power Applications by
Cover of the book Recent Trends in Philosophical Logic by
Cover of the book High Pressure Fluid Technology for Green Food Processing by
Cover of the book Descriptional Complexity of Formal Systems by
Cover of the book Sustainability in Remanufacturing Operations by
Cover of the book Neural Information Processing by
Cover of the book The Politics of Spectacle and Emotion in the 2016 Presidential Campaign by
Cover of the book Rare Astronomical Sights and Sounds by
Cover of the book Pseudo-Differential Operators: Groups, Geometry and Applications by
Cover of the book Human-Computer Interaction: Interaction Technologies by
Cover of the book Sino-Russian Relations in the 21st Century by
Cover of the book Equality and Differentiation in Marketised Higher Education by
Cover of the book Magnetic Reconnection by
Cover of the book Electrohydrodynamic Patterning of Functional Materials by
Cover of the book Maintenance Overtime Policies in Reliability Theory by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy