Python and HDF5

Unlocking Scientific Data

Nonfiction, Computers, Database Management, Programming, Programming Languages, General Computing
Cover of the book Python and HDF5 by Andrew Collette, O'Reilly Media
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Andrew Collette ISBN: 9781491945001
Publisher: O'Reilly Media Publication: October 21, 2013
Imprint: O'Reilly Media Language: English
Author: Andrew Collette
ISBN: 9781491945001
Publisher: O'Reilly Media
Publication: October 21, 2013
Imprint: O'Reilly Media
Language: English

Gain hands-on experience with HDF5 for storing scientific data in Python. This practical guide quickly gets you up to speed on the details, best practices, and pitfalls of using HDF5 to archive and share numerical datasets ranging in size from gigabytes to terabytes.

Through real-world examples and practical exercises, you’ll explore topics such as scientific datasets, hierarchically organized groups, user-defined metadata, and interoperable files. Examples are applicable for users of both Python 2 and Python 3. If you’re familiar with the basics of Python data analysis, this is an ideal introduction to HDF5.

  • Get set up with HDF5 tools and create your first HDF5 file
  • Work with datasets by learning the HDF5 Dataset object
  • Understand advanced features like dataset chunking and compression
  • Learn how to work with HDF5’s hierarchical structure, using groups
  • Create self-describing files by adding metadata with HDF5 attributes
  • Take advantage of HDF5’s type system to create interoperable files
  • Express relationships among data with references, named types, and dimension scales
  • Discover how Python mechanisms for writing parallel code interact with HDF5
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Gain hands-on experience with HDF5 for storing scientific data in Python. This practical guide quickly gets you up to speed on the details, best practices, and pitfalls of using HDF5 to archive and share numerical datasets ranging in size from gigabytes to terabytes.

Through real-world examples and practical exercises, you’ll explore topics such as scientific datasets, hierarchically organized groups, user-defined metadata, and interoperable files. Examples are applicable for users of both Python 2 and Python 3. If you’re familiar with the basics of Python data analysis, this is an ideal introduction to HDF5.

More books from O'Reilly Media

Cover of the book JavaScript & DHTML Cookbook by Andrew Collette
Cover of the book The Ruby Programming Language by Andrew Collette
Cover of the book Building Polyfills by Andrew Collette
Cover of the book DNS and BIND by Andrew Collette
Cover of the book Universal Design for Web Applications by Andrew Collette
Cover of the book Perl & LWP by Andrew Collette
Cover of the book Architecting for Scale by Andrew Collette
Cover of the book Building Web Reputation Systems by Andrew Collette
Cover of the book Continuous Enterprise Development in Java by Andrew Collette
Cover of the book Agile Enterprise Application Development with Flex by Andrew Collette
Cover of the book Programmer's Guide to Drupal by Andrew Collette
Cover of the book Learning Apache Drill by Andrew Collette
Cover of the book Word Hacks by Andrew Collette
Cover of the book Creating HTML5 Animations with Flash and Wallaby by Andrew Collette
Cover of the book TensorFlow for Deep Learning by Andrew Collette
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy