Author: | Gabriele Lanaro | ISBN: | 9781787282438 |
Publisher: | Packt Publishing | Publication: | May 24, 2017 |
Imprint: | Packt Publishing | Language: | English |
Author: | Gabriele Lanaro |
ISBN: | 9781787282438 |
Publisher: | Packt Publishing |
Publication: | May 24, 2017 |
Imprint: | Packt Publishing |
Language: | English |
Learn how to use Python to create efficient applications
The book is aimed at Python developers who want to improve the performance of their application. Basic knowledge of Python is expected
Python is a versatile language that has found applications in many industries. The clean syntax, rich standard library, and vast selection of third-party libraries make Python a wildly popular language.
Python High Performance is a practical guide that shows how to leverage the power of both native and third-party Python libraries to build robust applications.
The book explains how to use various profilers to find performance bottlenecks and apply the correct algorithm to fix them. The reader will learn how to effectively use NumPy and Cython to speed up numerical code. The book explains concepts of concurrent programming and how to implement robust and responsive applications using Reactive programming. Readers will learn how to write code for parallel architectures using Tensorflow and Theano, and use a cluster of computers for large-scale computations using technologies such as Dask and PySpark.
By the end of the book, readers will have learned to achieve performance and scale from their Python applications.
A step-by-step practical guide filled with real-world use cases and examples
Learn how to use Python to create efficient applications
The book is aimed at Python developers who want to improve the performance of their application. Basic knowledge of Python is expected
Python is a versatile language that has found applications in many industries. The clean syntax, rich standard library, and vast selection of third-party libraries make Python a wildly popular language.
Python High Performance is a practical guide that shows how to leverage the power of both native and third-party Python libraries to build robust applications.
The book explains how to use various profilers to find performance bottlenecks and apply the correct algorithm to fix them. The reader will learn how to effectively use NumPy and Cython to speed up numerical code. The book explains concepts of concurrent programming and how to implement robust and responsive applications using Reactive programming. Readers will learn how to write code for parallel architectures using Tensorflow and Theano, and use a cluster of computers for large-scale computations using technologies such as Dask and PySpark.
By the end of the book, readers will have learned to achieve performance and scale from their Python applications.
A step-by-step practical guide filled with real-world use cases and examples