R: Data Analysis and Visualization

Agnes Tuza

Nonfiction, Computers, Advanced Computing, Programming, Data Modeling & Design, Database Management, Data Processing
Cover of the book R: Data Analysis and Visualization by Tony Fischetti, Brett Lantz, Jaynal Abedin, Hrishi V. Mittal, Bater Makhabel, Edina Berlinger, Ferenc Illes, Milan Badics, Adam Banai, Gergely Daroczi, Packt Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Tony Fischetti, Brett Lantz, Jaynal Abedin, Hrishi V. Mittal, Bater Makhabel, Edina Berlinger, Ferenc Illes, Milan Badics, Adam Banai, Gergely Daroczi ISBN: 9781786460486
Publisher: Packt Publishing Publication: June 24, 2016
Imprint: Packt Publishing Language: English
Author: Tony Fischetti, Brett Lantz, Jaynal Abedin, Hrishi V. Mittal, Bater Makhabel, Edina Berlinger, Ferenc Illes, Milan Badics, Adam Banai, Gergely Daroczi
ISBN: 9781786460486
Publisher: Packt Publishing
Publication: June 24, 2016
Imprint: Packt Publishing
Language: English

Master the art of building analytical models using R

About This Book

  • Load, wrangle, and analyze your data using the world's most powerful statistical programming language
  • Build and customize publication-quality visualizations of powerful and stunning R graphs
  • Develop key skills and techniques with R to create and customize data mining algorithms
  • Use R to optimize your trading strategy and build up your own risk management system
  • Discover how to build machine learning algorithms, prepare data, and dig deep into data prediction techniques with R

Who This Book Is For

This course is for data scientist or quantitative analyst who are looking at learning R and take advantage of its powerful analytical design framework. It's a seamless journey in becoming a full-stack R developer.

What You Will Learn

  • Describe and visualize the behavior of data and relationships between data
  • Gain a thorough understanding of statistical reasoning and sampling
  • Handle missing data gracefully using multiple imputation
  • Create diverse types of bar charts using the default R functions
  • Familiarize yourself with algorithms written in R for spatial data mining, text mining, and so on
  • Understand relationships between market factors and their impact on your portfolio
  • Harness the power of R to build machine learning algorithms with real-world data science applications
  • Learn specialized machine learning techniques for text mining, big data, and more

In Detail

The R learning path created for you has five connected modules, which are a mini-course in their own right. As you complete each one, you'll have gained key skills and be ready for the material in the next module!

This course begins by looking at the Data Analysis with R module. This will help you navigate the R environment. You'll gain a thorough understanding of statistical reasoning and sampling. Finally, you'll be able to put best practices into effect to make your job easier and facilitate reproducibility.

The second place to explore is R Graphs, which will help you leverage powerful default R graphics and utilize advanced graphics systems such as lattice and ggplot2, the grammar of graphics. You'll learn how to produce, customize, and publish advanced visualizations using this popular and powerful framework.

With the third module, Learning Data Mining with R, you will learn how to manipulate data with R using code snippets and be introduced to mining frequent patterns, association, and correlations while working with R programs.

The Mastering R for Quantitative Finance module pragmatically introduces both the quantitative finance concepts and their modeling in R, enabling you to build a tailor-made trading system on your own. By the end of the module, you will be well-versed with various financial techniques using R and will be able to place good bets while making financial decisions.

Finally, we'll look at the Machine Learning with R module. With this module, you'll discover all the analytical tools you need to gain insights from complex data and learn how to choose the correct algorithm for your specific needs. You'll also learn to apply machine learning methods to deal with common tasks, including classification, prediction, forecasting, and so on.

Style and approach

Learn data analysis, data visualization techniques, data mining, and machine learning all using R and also learn to build models in quantitative finance using this powerful language.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Master the art of building analytical models using R

About This Book

Who This Book Is For

This course is for data scientist or quantitative analyst who are looking at learning R and take advantage of its powerful analytical design framework. It's a seamless journey in becoming a full-stack R developer.

What You Will Learn

In Detail

The R learning path created for you has five connected modules, which are a mini-course in their own right. As you complete each one, you'll have gained key skills and be ready for the material in the next module!

This course begins by looking at the Data Analysis with R module. This will help you navigate the R environment. You'll gain a thorough understanding of statistical reasoning and sampling. Finally, you'll be able to put best practices into effect to make your job easier and facilitate reproducibility.

The second place to explore is R Graphs, which will help you leverage powerful default R graphics and utilize advanced graphics systems such as lattice and ggplot2, the grammar of graphics. You'll learn how to produce, customize, and publish advanced visualizations using this popular and powerful framework.

With the third module, Learning Data Mining with R, you will learn how to manipulate data with R using code snippets and be introduced to mining frequent patterns, association, and correlations while working with R programs.

The Mastering R for Quantitative Finance module pragmatically introduces both the quantitative finance concepts and their modeling in R, enabling you to build a tailor-made trading system on your own. By the end of the module, you will be well-versed with various financial techniques using R and will be able to place good bets while making financial decisions.

Finally, we'll look at the Machine Learning with R module. With this module, you'll discover all the analytical tools you need to gain insights from complex data and learn how to choose the correct algorithm for your specific needs. You'll also learn to apply machine learning methods to deal with common tasks, including classification, prediction, forecasting, and so on.

Style and approach

Learn data analysis, data visualization techniques, data mining, and machine learning all using R and also learn to build models in quantitative finance using this powerful language.

More books from Packt Publishing

Cover of the book Kali Linux Web Penetration Testing Cookbook by Tony Fischetti, Brett Lantz, Jaynal Abedin, Hrishi V. Mittal, Bater Makhabel, Edina Berlinger, Ferenc Illes, Milan Badics, Adam Banai, Gergely Daroczi
Cover of the book Amazon Fargate Quick Start Guide by Tony Fischetti, Brett Lantz, Jaynal Abedin, Hrishi V. Mittal, Bater Makhabel, Edina Berlinger, Ferenc Illes, Milan Badics, Adam Banai, Gergely Daroczi
Cover of the book iOS 5 Essentials by Tony Fischetti, Brett Lantz, Jaynal Abedin, Hrishi V. Mittal, Bater Makhabel, Edina Berlinger, Ferenc Illes, Milan Badics, Adam Banai, Gergely Daroczi
Cover of the book ServiceStack 4 Cookbook by Tony Fischetti, Brett Lantz, Jaynal Abedin, Hrishi V. Mittal, Bater Makhabel, Edina Berlinger, Ferenc Illes, Milan Badics, Adam Banai, Gergely Daroczi
Cover of the book scikit-learn : Machine Learning Simplified by Tony Fischetti, Brett Lantz, Jaynal Abedin, Hrishi V. Mittal, Bater Makhabel, Edina Berlinger, Ferenc Illes, Milan Badics, Adam Banai, Gergely Daroczi
Cover of the book GlassFish Administration by Tony Fischetti, Brett Lantz, Jaynal Abedin, Hrishi V. Mittal, Bater Makhabel, Edina Berlinger, Ferenc Illes, Milan Badics, Adam Banai, Gergely Daroczi
Cover of the book Mastering RethinkDB by Tony Fischetti, Brett Lantz, Jaynal Abedin, Hrishi V. Mittal, Bater Makhabel, Edina Berlinger, Ferenc Illes, Milan Badics, Adam Banai, Gergely Daroczi
Cover of the book Mastering Apache Cassandra - Second Edition by Tony Fischetti, Brett Lantz, Jaynal Abedin, Hrishi V. Mittal, Bater Makhabel, Edina Berlinger, Ferenc Illes, Milan Badics, Adam Banai, Gergely Daroczi
Cover of the book Instant RubyMine Assimilation by Tony Fischetti, Brett Lantz, Jaynal Abedin, Hrishi V. Mittal, Bater Makhabel, Edina Berlinger, Ferenc Illes, Milan Badics, Adam Banai, Gergely Daroczi
Cover of the book Arduino by Example by Tony Fischetti, Brett Lantz, Jaynal Abedin, Hrishi V. Mittal, Bater Makhabel, Edina Berlinger, Ferenc Illes, Milan Badics, Adam Banai, Gergely Daroczi
Cover of the book Desire2Learn for Higher Education Cookbook by Tony Fischetti, Brett Lantz, Jaynal Abedin, Hrishi V. Mittal, Bater Makhabel, Edina Berlinger, Ferenc Illes, Milan Badics, Adam Banai, Gergely Daroczi
Cover of the book OSGi and Apache Felix 3.0 Beginner's Guide by Tony Fischetti, Brett Lantz, Jaynal Abedin, Hrishi V. Mittal, Bater Makhabel, Edina Berlinger, Ferenc Illes, Milan Badics, Adam Banai, Gergely Daroczi
Cover of the book VMware Horizon View High Availability by Tony Fischetti, Brett Lantz, Jaynal Abedin, Hrishi V. Mittal, Bater Makhabel, Edina Berlinger, Ferenc Illes, Milan Badics, Adam Banai, Gergely Daroczi
Cover of the book Arduino Android Blueprints by Tony Fischetti, Brett Lantz, Jaynal Abedin, Hrishi V. Mittal, Bater Makhabel, Edina Berlinger, Ferenc Illes, Milan Badics, Adam Banai, Gergely Daroczi
Cover of the book Learning Haskell Data Analysis by Tony Fischetti, Brett Lantz, Jaynal Abedin, Hrishi V. Mittal, Bater Makhabel, Edina Berlinger, Ferenc Illes, Milan Badics, Adam Banai, Gergely Daroczi
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy