Radiation Effects in Semiconductors

Nonfiction, Science & Nature, Technology, Electronics, Circuits, Engineering, Mechanical
Cover of the book Radiation Effects in Semiconductors by , CRC Press
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781351833752
Publisher: CRC Press Publication: September 3, 2018
Imprint: CRC Press Language: English
Author:
ISBN: 9781351833752
Publisher: CRC Press
Publication: September 3, 2018
Imprint: CRC Press
Language: English

Space applications, nuclear physics, military operations, medical imaging, and especially electronics (modern silicon processing) are obvious fields in which radiation damage can have serious consequences, i.e., degradation of MOS devices and circuits. Zeroing in on vital aspects of this broad and complex topic, Radiation Effects in Semiconductors addresses the ever-growing need for a clear understanding of radiation effects on semiconductor devices and circuits to combat potential damage it can cause.

Features a chapter authored by renowned radiation authority Lawrence T. Clark on Radiation Hardened by Design SRAM Strategies for TID and SEE Mitigation

This book analyzes the radiation problem, focusing on the most important aspects required for comprehending the degrading effects observed in semiconductor devices, circuits, and systems when they are irradiated. It explores how radiation interacts with solid materials, providing a detailed analysis of three ways this occurs: Photoelectric effect, Compton effect, and creation of electron-positron pairs. The author explains that the probability of these three effects occurring depends on the energy of the incident photon and the atomic number of the target. The book also discusses the effects that photons can have on matter—in terms of ionization effects and nuclear displacement

Written for post-graduate researchers, semiconductor engineers, and nuclear and space engineers with some electronics background, this carefully constructed reference explains how ionizing radiation is creating damage in semiconducting devices and circuits and systems—and how that damage can be avoided in areas such as military/space missions, nuclear applications, plasma damage, and X-ray-based techniques. It features top-notch international experts in industry and academia who address emerging detector technologies, circuit design techniques, new materials, and innovative system approaches.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Space applications, nuclear physics, military operations, medical imaging, and especially electronics (modern silicon processing) are obvious fields in which radiation damage can have serious consequences, i.e., degradation of MOS devices and circuits. Zeroing in on vital aspects of this broad and complex topic, Radiation Effects in Semiconductors addresses the ever-growing need for a clear understanding of radiation effects on semiconductor devices and circuits to combat potential damage it can cause.

Features a chapter authored by renowned radiation authority Lawrence T. Clark on Radiation Hardened by Design SRAM Strategies for TID and SEE Mitigation

This book analyzes the radiation problem, focusing on the most important aspects required for comprehending the degrading effects observed in semiconductor devices, circuits, and systems when they are irradiated. It explores how radiation interacts with solid materials, providing a detailed analysis of three ways this occurs: Photoelectric effect, Compton effect, and creation of electron-positron pairs. The author explains that the probability of these three effects occurring depends on the energy of the incident photon and the atomic number of the target. The book also discusses the effects that photons can have on matter—in terms of ionization effects and nuclear displacement

Written for post-graduate researchers, semiconductor engineers, and nuclear and space engineers with some electronics background, this carefully constructed reference explains how ionizing radiation is creating damage in semiconducting devices and circuits and systems—and how that damage can be avoided in areas such as military/space missions, nuclear applications, plasma damage, and X-ray-based techniques. It features top-notch international experts in industry and academia who address emerging detector technologies, circuit design techniques, new materials, and innovative system approaches.

More books from CRC Press

Cover of the book Data Analytics Applications in Latin America and Emerging Economies by
Cover of the book Writing to Improve Healthcare by
Cover of the book Electrostatic Discharge Protection by
Cover of the book V-Ray My Way by
Cover of the book The Science of Composting by
Cover of the book Nanostructured Energy Devices by
Cover of the book Analysis of Pesticides in Water by
Cover of the book Multimedia Security by
Cover of the book Modern Directional Statistics by
Cover of the book Aquatic and Surface Photochemistry by
Cover of the book Practical and Experimental Robotics by
Cover of the book Genetics and Breeding of Edible Mushrooms by
Cover of the book The Laboratory Nonhuman Primate by
Cover of the book Predicting Photosynthesis For Ecosystem Models by
Cover of the book Hostile Intent and Counter-Terrorism by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy