Redox Homeostasis in Plants

From Signalling to Stress Tolerance

Nonfiction, Science & Nature, Science, Biological Sciences, Biochemistry, Botany
Cover of the book Redox Homeostasis in Plants by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319953151
Publisher: Springer International Publishing Publication: April 23, 2019
Imprint: Springer Language: English
Author:
ISBN: 9783319953151
Publisher: Springer International Publishing
Publication: April 23, 2019
Imprint: Springer
Language: English

This book summarizes the latest research results on the role of reactive oxygen species (ROS) in plants, particularly in many abiotic stresses, and their regulation. Redox homeostasis refers to maintaining a balance of oxidised and reduced state of biomolecules in a biological system for all-round sustenance. In a living system, redox reactions contribute to the generation of reactive oxygen species (ROS), which act as signalling molecules for developmental as well as stress-response processes in plants. It is presumed that, being sessile and an aerobe requiring oxygen for mitochondrial energy production, as well as producing oxygen during photosynthesis, the redox homeostasis process is more complex and regulated in plants than in animals. Any imbalance in the homeostasis is mainly compensated for by the production of various ROS molecules, which, though they can cause severe oxidative damage in excess, can also ideally act as signalling molecules.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book summarizes the latest research results on the role of reactive oxygen species (ROS) in plants, particularly in many abiotic stresses, and their regulation. Redox homeostasis refers to maintaining a balance of oxidised and reduced state of biomolecules in a biological system for all-round sustenance. In a living system, redox reactions contribute to the generation of reactive oxygen species (ROS), which act as signalling molecules for developmental as well as stress-response processes in plants. It is presumed that, being sessile and an aerobe requiring oxygen for mitochondrial energy production, as well as producing oxygen during photosynthesis, the redox homeostasis process is more complex and regulated in plants than in animals. Any imbalance in the homeostasis is mainly compensated for by the production of various ROS molecules, which, though they can cause severe oxidative damage in excess, can also ideally act as signalling molecules.

More books from Springer International Publishing

Cover of the book Stem Surface Area in Modeling of Forest Stands by
Cover of the book Ordering Phenomena in Rare-Earth Nickelate Heterostructures by
Cover of the book Servitization in Industry by
Cover of the book New Trends in Medical and Service Robotics by
Cover of the book Advanced Visual Interfaces. Supporting Big Data Applications by
Cover of the book Applications in Electronics Pervading Industry, Environment and Society by
Cover of the book Moral Equality, Bioethics, and the Child by
Cover of the book Remembering Protest in Britain since 1500 by
Cover of the book Intervention Effectiveness Research: Quality Improvement and Program Evaluation by
Cover of the book Mobility and Ancient Society in Asia and the Americas by
Cover of the book Multibody Mechatronic Systems by
Cover of the book Trends in Neurovascular Interventions by
Cover of the book Number Theory by
Cover of the book The International Political Economy of Oil and Gas by
Cover of the book Responsible People by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy