Semi-Infinite Fractional Programming

Business & Finance, Economics, Statistics, Nonfiction, Science & Nature, Mathematics, Applied
Cover of the book Semi-Infinite Fractional Programming by Ram U. Verma, Springer Singapore
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Ram U. Verma ISBN: 9789811062568
Publisher: Springer Singapore Publication: October 24, 2017
Imprint: Springer Language: English
Author: Ram U. Verma
ISBN: 9789811062568
Publisher: Springer Singapore
Publication: October 24, 2017
Imprint: Springer
Language: English

This book presents a smooth and unified transitional framework from generalised fractional programming, with a finite number of variables and a finite number of constraints, to semi-infinite fractional programming, where a number of variables are finite but with infinite constraints. It focuses on empowering graduate students, faculty and other research enthusiasts to pursue more accelerated research advances with significant interdisciplinary applications without borders. In terms of developing general frameworks for theoretical foundations and real-world applications, it discusses a number of new classes of generalised second-order invex functions and second-order univex functions, new sets of second-order necessary optimality conditions, second-order sufficient optimality conditions, and second-order duality models for establishing numerous duality theorems for discrete minmax (or maxmin) semi-infinite fractional programming problems.

 

In the current interdisciplinary supercomputer-oriented research environment, semi-infinite fractional programming is among the most rapidly expanding research areas in terms of its multi-facet applications empowerment for real-world problems, which may stem from many control problems in robotics, outer approximation in geometry, and portfolio problems in economics, that can be transformed into semi-infinite problems as well as handled by transforming them into semi-infinite fractional programming problems. As a matter of fact, in mathematical optimisation programs, a fractional programming (or program) is a generalisation to linear fractional programming. These problems lay the theoretical foundation that enables us to fully investigate the second-order optimality and duality aspects of our principal fractional programming problem as well as its semi-infinite counterpart.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book presents a smooth and unified transitional framework from generalised fractional programming, with a finite number of variables and a finite number of constraints, to semi-infinite fractional programming, where a number of variables are finite but with infinite constraints. It focuses on empowering graduate students, faculty and other research enthusiasts to pursue more accelerated research advances with significant interdisciplinary applications without borders. In terms of developing general frameworks for theoretical foundations and real-world applications, it discusses a number of new classes of generalised second-order invex functions and second-order univex functions, new sets of second-order necessary optimality conditions, second-order sufficient optimality conditions, and second-order duality models for establishing numerous duality theorems for discrete minmax (or maxmin) semi-infinite fractional programming problems.

 

In the current interdisciplinary supercomputer-oriented research environment, semi-infinite fractional programming is among the most rapidly expanding research areas in terms of its multi-facet applications empowerment for real-world problems, which may stem from many control problems in robotics, outer approximation in geometry, and portfolio problems in economics, that can be transformed into semi-infinite problems as well as handled by transforming them into semi-infinite fractional programming problems. As a matter of fact, in mathematical optimisation programs, a fractional programming (or program) is a generalisation to linear fractional programming. These problems lay the theoretical foundation that enables us to fully investigate the second-order optimality and duality aspects of our principal fractional programming problem as well as its semi-infinite counterpart.

More books from Springer Singapore

Cover of the book Conservation Agriculture by Ram U. Verma
Cover of the book The Indian Metamorphosis by Ram U. Verma
Cover of the book Foreign Language Learning Anxiety in China by Ram U. Verma
Cover of the book Ethics and Sustainability in Accounting and Finance, Volume I by Ram U. Verma
Cover of the book Contemporary Logistics in China by Ram U. Verma
Cover of the book Understanding the Nature of Motivation and Motivating Students through Teaching and Learning in Higher Education by Ram U. Verma
Cover of the book Advances in Computing and Data Sciences by Ram U. Verma
Cover of the book Impact of Climate Change on Hydro-Energy Potential by Ram U. Verma
Cover of the book Mobile Learning Design by Ram U. Verma
Cover of the book Legal Certainty in a Contemporary Context by Ram U. Verma
Cover of the book Thidiazuron: From Urea Derivative to Plant Growth Regulator by Ram U. Verma
Cover of the book Alloys and Composites of Polybenzoxazines by Ram U. Verma
Cover of the book Innovations in Computer Science and Engineering by Ram U. Verma
Cover of the book Applied Spectroscopy and the Science of Nanomaterials by Ram U. Verma
Cover of the book Anisotropic Elasticity by Ram U. Verma
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy