Simulation-Based Optimization

Parametric Optimization Techniques and Reinforcement Learning

Business & Finance, Management & Leadership, Operations Research, Nonfiction, Computers
Cover of the book Simulation-Based Optimization by Abhijit Gosavi, Springer US
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Abhijit Gosavi ISBN: 9781489974914
Publisher: Springer US Publication: October 30, 2014
Imprint: Springer Language: English
Author: Abhijit Gosavi
ISBN: 9781489974914
Publisher: Springer US
Publication: October 30, 2014
Imprint: Springer
Language: English

Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduce the evolving area of static and dynamic simulation-based optimization. Covered in detail are model-free optimization techniques – especially designed for those discrete-event, stochastic systems which can be simulated but whose analytical models are difficult to find in closed mathematical forms.

Key features of this revised and improved Second Edition include:

· Extensive coverage, via step-by-step recipes, of powerful new algorithms for static simulation optimization, including simultaneous perturbation, backtracking adaptive search and nested partitions, in addition to traditional methods, such as response surfaces, Nelder-Mead search and meta-heuristics (simulated annealing, tabu search, and genetic algorithms)

· Detailed coverage of the Bellman equation framework for Markov Decision Processes (MDPs), along with dynamic programming (value and policy iteration) for discounted, average, and total reward performance metrics

· An in-depth consideration of dynamic simulation optimization via temporal differences and Reinforcement Learning: Q-Learning, SARSA, and R-SMART algorithms, and policy search, via API, Q-P-Learning, actor-critics, and learning automata

· A special examination of neural-network-based function approximation for Reinforcement Learning, semi-Markov decision processes (SMDPs), finite-horizon problems, two time scales, case studies for industrial tasks, computer codes (placed online) and convergence proofs, via Banach fixed point theory and Ordinary Differential Equations

Themed around three areas in separate sets of chapters – Static Simulation Optimization, Reinforcement Learning and Convergence Analysis– this book is written for researchers and students in the fields of engineering (industrial, systems, electrical and computer), operations research, computer science and applied mathematics.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduce the evolving area of static and dynamic simulation-based optimization. Covered in detail are model-free optimization techniques – especially designed for those discrete-event, stochastic systems which can be simulated but whose analytical models are difficult to find in closed mathematical forms.

Key features of this revised and improved Second Edition include:

· Extensive coverage, via step-by-step recipes, of powerful new algorithms for static simulation optimization, including simultaneous perturbation, backtracking adaptive search and nested partitions, in addition to traditional methods, such as response surfaces, Nelder-Mead search and meta-heuristics (simulated annealing, tabu search, and genetic algorithms)

· Detailed coverage of the Bellman equation framework for Markov Decision Processes (MDPs), along with dynamic programming (value and policy iteration) for discounted, average, and total reward performance metrics

· An in-depth consideration of dynamic simulation optimization via temporal differences and Reinforcement Learning: Q-Learning, SARSA, and R-SMART algorithms, and policy search, via API, Q-P-Learning, actor-critics, and learning automata

· A special examination of neural-network-based function approximation for Reinforcement Learning, semi-Markov decision processes (SMDPs), finite-horizon problems, two time scales, case studies for industrial tasks, computer codes (placed online) and convergence proofs, via Banach fixed point theory and Ordinary Differential Equations

Themed around three areas in separate sets of chapters – Static Simulation Optimization, Reinforcement Learning and Convergence Analysis– this book is written for researchers and students in the fields of engineering (industrial, systems, electrical and computer), operations research, computer science and applied mathematics.

More books from Springer US

Cover of the book Crystal Identification with the Polarizing Microscope by Abhijit Gosavi
Cover of the book The Annotated Bibliography of International Programme Evaluation by Abhijit Gosavi
Cover of the book Hardware/Software Co-Design and Co-Verification by Abhijit Gosavi
Cover of the book Child Nurturance by Abhijit Gosavi
Cover of the book Advances in Clinical Child Psychology by Abhijit Gosavi
Cover of the book Labor Market Policies in Canada and Latin America: Challenges of the New Millennium by Abhijit Gosavi
Cover of the book The Neuropsychology of Language by Abhijit Gosavi
Cover of the book Psychology: From Research to Practice by Abhijit Gosavi
Cover of the book Remote Instrumentation and Virtual Laboratories by Abhijit Gosavi
Cover of the book Basic and Clinical Applications of Flow Cytometry by Abhijit Gosavi
Cover of the book Preschool Issues in Autism by Abhijit Gosavi
Cover of the book Tractor-Implement Systems by Abhijit Gosavi
Cover of the book Modernization of Traditional Food Processes and Products by Abhijit Gosavi
Cover of the book Purchasing and Supply Management by Abhijit Gosavi
Cover of the book Chemists’ Views of Imaging Centers by Abhijit Gosavi
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy