Space Shuttle NASA Mission Reports: 1992 Missions, STS-42, STS-45, STS-49, STS-50, STS-46, STS-47, STS-52, STS-53

Nonfiction, Science & Nature, Science, Physics, Astronomy, Other Sciences, History
Cover of the book Space Shuttle NASA Mission Reports: 1992 Missions, STS-42, STS-45, STS-49, STS-50, STS-46, STS-47, STS-52, STS-53 by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781465875648
Publisher: Progressive Management Publication: January 9, 2012
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781465875648
Publisher: Progressive Management
Publication: January 9, 2012
Imprint: Smashwords Edition
Language: English

These official final program mission reports issued by the NASA Johnson Space Center cover missions in 1992: STS-42, STS-45, STS-49, STS-50, STS-46, STS-47, STS-52, and STS-53. In these thorough reports, with information and specifics not available on NASA website mission descriptions, each orbiter system is reviewed in detail along with technical information on performance and anomalies.

STS-42: The primary objective of the STS-42 mission was to complete the objectives of the first International Microgravity Laboratory (IML-1). The crew for this forty-fifth Space Shuttle flight was Ronald J. Grabe, Col., USAF, Commander; Steven S. Oswald, Pilot; Norman E. Thagard, M.D., Mission Specialist 1 (Payload Commander); William F. Readdy, Mission Specialist 2; David C. Hilmers, Col., USMC, Mission Specialist 3; Roberta L. Bondar, Ph.D, Payload Specialist 1; and Ulf D. Merbold, Ph.D, Payload Specialist 2.

STS-45: The primary objective of this mission was to successfully perform the planned operations of the Atmospheric Laboratory for Applications and Science-1 (ATLAS-1) and the Shuttle Solar Backscatter Ultraviolet Instrument (SSBUV) payloads.

STS-49: The primary objectives of this flight were to perform the operations necessary to re-boost the International Telecommunications Satellite VI (INTELSAT VI) spacecraft and to fulfill the requirements of the Assembly of Station by Extravehicular Activity (EVA) Methods (ASEM) payload.

STS-50: The primary objective of the STS-50 flight was to successfully perform the planned operations of the United States Microgravity Laboratory (USML-1) payload. The secondary objectives of this flight were to perform the operations required by the Investigations into Polymer Membrane Processing (IPMP), and the Shuttle Amateur Radio Experiment II (SAREX-II) payloads.

STS-46: The primary objective of this flight was to successfully deploy the European Retrievable Carrier (EURECA) payload and perform the operations of the Tethered Satellite System-1 (TSS-1) and the Evaluation of Oxygen Interaction with Material Ill/Thermal Energy Management Processes 2A-3 (EOIM-III/TEMP 2A-3).

STS-47: The primary objective of the STS-47 flight was to successfully perform the planned operations of the Spacelab-J (SL-J) payload [containing 43 experiments of which 34 were provided by the Japanese National Space Development Agency (NASDA)]. The secondary objectives of this flight were to perform the operations of the Israeli Space Agency Investigation About Hornets (ISAIAH) payload, the Solid Surface Combustion Experiment (SSCE), the Shuttle Amateur Radio Experiment-II (SAREX-II), and the Get-Away Special (GAS) payloads. The Ultraviolet Plume Instrument (UVPI) was flown as a payload of opportunity.

STS-52: The primary objectives of this flight were to successfully deploy the Laser Geodynamic Satellite (LAGE0S-II) and to perform operations of the United States Microgravity Payload-1 (USMP-1).

STS-53: The primary objective of this flight was to successfully deploy the Department of Defense 1 (DOD-1) payload. The secondary objectives of this flight were to perform the operations required by the Glow Experiment/Cryogenic Heat Pipe Experiment Payload (GCP); the Hand-Held, Earth-Oriented, Real-time, Cooperative, User-Friendly, Location-Targeting and Environmental System (HERCULES); the Space Tissue Loss (STL); the Battlefield Laser Acquisition Sensor Test (BLAST); the Radiation Monitoring Equipment-Ill (RME-III); the Microcapsules in Space-1 (MIS-1); the Visual Function Tester-2 (VFT-2); the Cosmic Radiation Effects and Activation Monitor (CREAM); the Clouds Logic to Optimize Use of Defense Systems-IA (CLOUDS-1A); the Fluids Acquisition and Resupply Experiment (FARE); and the Orbital Debris Radar Calibration Spheres (ODERACS).

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

These official final program mission reports issued by the NASA Johnson Space Center cover missions in 1992: STS-42, STS-45, STS-49, STS-50, STS-46, STS-47, STS-52, and STS-53. In these thorough reports, with information and specifics not available on NASA website mission descriptions, each orbiter system is reviewed in detail along with technical information on performance and anomalies.

STS-42: The primary objective of the STS-42 mission was to complete the objectives of the first International Microgravity Laboratory (IML-1). The crew for this forty-fifth Space Shuttle flight was Ronald J. Grabe, Col., USAF, Commander; Steven S. Oswald, Pilot; Norman E. Thagard, M.D., Mission Specialist 1 (Payload Commander); William F. Readdy, Mission Specialist 2; David C. Hilmers, Col., USMC, Mission Specialist 3; Roberta L. Bondar, Ph.D, Payload Specialist 1; and Ulf D. Merbold, Ph.D, Payload Specialist 2.

STS-45: The primary objective of this mission was to successfully perform the planned operations of the Atmospheric Laboratory for Applications and Science-1 (ATLAS-1) and the Shuttle Solar Backscatter Ultraviolet Instrument (SSBUV) payloads.

STS-49: The primary objectives of this flight were to perform the operations necessary to re-boost the International Telecommunications Satellite VI (INTELSAT VI) spacecraft and to fulfill the requirements of the Assembly of Station by Extravehicular Activity (EVA) Methods (ASEM) payload.

STS-50: The primary objective of the STS-50 flight was to successfully perform the planned operations of the United States Microgravity Laboratory (USML-1) payload. The secondary objectives of this flight were to perform the operations required by the Investigations into Polymer Membrane Processing (IPMP), and the Shuttle Amateur Radio Experiment II (SAREX-II) payloads.

STS-46: The primary objective of this flight was to successfully deploy the European Retrievable Carrier (EURECA) payload and perform the operations of the Tethered Satellite System-1 (TSS-1) and the Evaluation of Oxygen Interaction with Material Ill/Thermal Energy Management Processes 2A-3 (EOIM-III/TEMP 2A-3).

STS-47: The primary objective of the STS-47 flight was to successfully perform the planned operations of the Spacelab-J (SL-J) payload [containing 43 experiments of which 34 were provided by the Japanese National Space Development Agency (NASDA)]. The secondary objectives of this flight were to perform the operations of the Israeli Space Agency Investigation About Hornets (ISAIAH) payload, the Solid Surface Combustion Experiment (SSCE), the Shuttle Amateur Radio Experiment-II (SAREX-II), and the Get-Away Special (GAS) payloads. The Ultraviolet Plume Instrument (UVPI) was flown as a payload of opportunity.

STS-52: The primary objectives of this flight were to successfully deploy the Laser Geodynamic Satellite (LAGE0S-II) and to perform operations of the United States Microgravity Payload-1 (USMP-1).

STS-53: The primary objective of this flight was to successfully deploy the Department of Defense 1 (DOD-1) payload. The secondary objectives of this flight were to perform the operations required by the Glow Experiment/Cryogenic Heat Pipe Experiment Payload (GCP); the Hand-Held, Earth-Oriented, Real-time, Cooperative, User-Friendly, Location-Targeting and Environmental System (HERCULES); the Space Tissue Loss (STL); the Battlefield Laser Acquisition Sensor Test (BLAST); the Radiation Monitoring Equipment-Ill (RME-III); the Microcapsules in Space-1 (MIS-1); the Visual Function Tester-2 (VFT-2); the Cosmic Radiation Effects and Activation Monitor (CREAM); the Clouds Logic to Optimize Use of Defense Systems-IA (CLOUDS-1A); the Fluids Acquisition and Resupply Experiment (FARE); and the Orbital Debris Radar Calibration Spheres (ODERACS).

More books from Progressive Management

Cover of the book Culture Wars: Air Force Culture and Civil - Military Relations - USAF History on Dealing with National Policy, Case Studies of Operation Desert Storm and Northern/Southern Watch, Decade of Quasi-War by Progressive Management
Cover of the book NASA Space Technology Report: EVA Radio - Desert Research and Technology Studies DRATS 2011 Report, Analog Testing of Technologies for Human Space Exploration by Progressive Management
Cover of the book They Made it Happen: Oral Histories of the Unsung Heroes of NASA's Space Shuttle Program - Engineers and Managers Recount Amazing Stories about America's Winged Space Marvel by Progressive Management
Cover of the book 21st Century FEMA Study Course: An Introduction to Hazardous Materials (IS-5.a) - Government Roles, Toxic Chemicals as WMD, Materials Safety Data Sheet, Regulations, Human Health by Progressive Management
Cover of the book Chechnya: A Complete Guide - Insurgent Groups, Terrorists, Chechen Rebels and Muslims, Islamist Movement, Russian Military Invasion and War, Russian Caucasus Conflicts by Progressive Management
Cover of the book Fire Effects Guide (PMS 481) - Wildland and Forest Fire Behavior, Characteristics, Fuels, Air Quality, Soils, Water, Plants, Wildlife, Habitat, Cultural Resources, Grazing Management by Progressive Management
Cover of the book Commanding Heights: Strategic Lessons from Complex Operations - Afghanistan, Iraq War, Post-conflict Stabilization and Reconstruction, Balkans, Kosovo, Bosnia, Haiti, Pakistan, Somalia by Progressive Management
Cover of the book Crossing the Line of Departure: Battle Command on the Move, A Historical Perspective - Ancient Times, Genghis Khan, Yorktown, Civil War, World War I and II Industrial Age, Vietnam, Gulf War, Iraq War by Progressive Management
Cover of the book Poland in Perspective: Orientation Guide and Polish Cultural Orientation: Geography, History, Economy, Security, Gomulka, Gierek, Collapse of Communism, Warsaw, Lodz, Krakow, Gdansk, Lublin, Oder by Progressive Management
Cover of the book Auto Racing Analysis Today in Auto Racing: Victory Lane Milestones by Progressive Management
Cover of the book Roadside Bombs and Improvised Explosive Devices (IEDs) - America's Effort to Target and Defeat Homemade Explosives in Afghanistan and Iraq - Electronics, Surveillance, Dogs, and More by Progressive Management
Cover of the book Planning and Organizing the Postwar Air Force: 1943-1947 - Roots of AAF, Planning for 70 Groups, Unification, Moving Toward Autonomy, Independence and Organization, Eisenhower and Truman by Progressive Management
Cover of the book Science and Technology: The Making of the Air Force Research Laboratory - Laboratory Consolidation, Vision 21, Infrastructure, Laboratory Studies and Strategy by Progressive Management
Cover of the book 21st Century Adult Cancer Sourcebook: Pancreatic Cancer, Pancreatic Neoplasms, Cancer of the Pancreas - Clinical Data for Patients, Families, and Physicians by Progressive Management
Cover of the book The Paths of Heaven: The Evolution of Airpower Theory - Douhet, World War I and II, William Mitchell, Naval Theories, Continental Europe, Air Corps, deSeversky, Nuclear Strategy, Boyd, Warden, NATO by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy