Spectroscopy and Modeling of Biomolecular Building Blocks

Nonfiction, Science & Nature, Science, Physics, Spectrum Analysis, Chemistry, Physical & Theoretical
Cover of the book Spectroscopy and Modeling of Biomolecular Building Blocks by Jean-Pierre Schermann, Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Jean-Pierre Schermann ISBN: 9780080558226
Publisher: Elsevier Science Publication: October 16, 2007
Imprint: Elsevier Science Language: English
Author: Jean-Pierre Schermann
ISBN: 9780080558226
Publisher: Elsevier Science
Publication: October 16, 2007
Imprint: Elsevier Science
Language: English

Spectroscopy and Modeling of Biomolecular Building Blocks presents an overview of recent advances in the intertwining of the following research fields: photon and electron spectroscopy, quantum chemistry, modelling and mass-spectrometry. The coupling of these disciplines offers a new point of view to the understanding of isolated elementary building blocks of biomolecules and their assemblies. It allows the unambiguous separation between intrinsic properties of biomolecular systems and those induced by the presence of their environment.

The first chapters provide background in modelling (I), frequency-resolved spectroscopy using microwave, infrared and UV photons, time-resolved spectroscopy in the femtosecond domain and energy-resolved electron spectroscopy (II) and production of gas-phase neutral and ionic biomolecular species, mass-spectrometry, ion mobility and BIRD techniques (III).

Chapter IV is devoted to case studies of gas-phase experimental investigations coupled to quantum or classical calculations. The topics are structural studies of nucleobases and oligonucleotides, peptides and proteins, sugars; neuromolecules; non-covalent complexes; chiral systems, interactions of low-energy electrons with biomolecules in the radiation chemistry context and very large gas-phase biomolecular systems.

The fifth chapter concerns the link between gas-phase and liquid-phase. Different treatments of solvation are illustrated through examples pointing out the influence of progressive addition of water molecules upon properties of nucleobases, peptides, sugars and neuromolecules.

  • Offer a new perspective to the understanding of isolated elementary building blocks of bio molecules
  • Includes case studies of experimental investigations coupled to quantum or classical calculations
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Spectroscopy and Modeling of Biomolecular Building Blocks presents an overview of recent advances in the intertwining of the following research fields: photon and electron spectroscopy, quantum chemistry, modelling and mass-spectrometry. The coupling of these disciplines offers a new point of view to the understanding of isolated elementary building blocks of biomolecules and their assemblies. It allows the unambiguous separation between intrinsic properties of biomolecular systems and those induced by the presence of their environment.

The first chapters provide background in modelling (I), frequency-resolved spectroscopy using microwave, infrared and UV photons, time-resolved spectroscopy in the femtosecond domain and energy-resolved electron spectroscopy (II) and production of gas-phase neutral and ionic biomolecular species, mass-spectrometry, ion mobility and BIRD techniques (III).

Chapter IV is devoted to case studies of gas-phase experimental investigations coupled to quantum or classical calculations. The topics are structural studies of nucleobases and oligonucleotides, peptides and proteins, sugars; neuromolecules; non-covalent complexes; chiral systems, interactions of low-energy electrons with biomolecules in the radiation chemistry context and very large gas-phase biomolecular systems.

The fifth chapter concerns the link between gas-phase and liquid-phase. Different treatments of solvation are illustrated through examples pointing out the influence of progressive addition of water molecules upon properties of nucleobases, peptides, sugars and neuromolecules.

More books from Elsevier Science

Cover of the book The Mediterranean Diet by Jean-Pierre Schermann
Cover of the book Smart Bandage Technologies by Jean-Pierre Schermann
Cover of the book The 2011 Fukushima Nuclear Power Plant Accident by Jean-Pierre Schermann
Cover of the book Advances in Cancer Research by Jean-Pierre Schermann
Cover of the book Semiconductor Circuits by Jean-Pierre Schermann
Cover of the book IPv6 Core Protocols Implementation by Jean-Pierre Schermann
Cover of the book Progress in Medicinal Chemistry by Jean-Pierre Schermann
Cover of the book Hormones and Human Breast Cancer by Jean-Pierre Schermann
Cover of the book Advances in Drug Research by Jean-Pierre Schermann
Cover of the book Advances in Immunology by Jean-Pierre Schermann
Cover of the book Flour and Breads and their Fortification in Health and Disease Prevention by Jean-Pierre Schermann
Cover of the book Strategies and Tactics in Organic Synthesis by Jean-Pierre Schermann
Cover of the book Guide to the Practical Use of Chemicals in Refineries and Pipelines by Jean-Pierre Schermann
Cover of the book Modeling Damage, Fatigue and Failure of Composite Materials by Jean-Pierre Schermann
Cover of the book Prostate Cancer by Jean-Pierre Schermann
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy