Statistical Data Analytics

Foundations for Data Mining, Informatics, and Knowledge Discovery

Nonfiction, Science & Nature, Mathematics, Statistics
Cover of the book Statistical Data Analytics by Walter W. Piegorsch, Wiley
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Walter W. Piegorsch ISBN: 9781119030669
Publisher: Wiley Publication: August 21, 2015
Imprint: Wiley Language: English
Author: Walter W. Piegorsch
ISBN: 9781119030669
Publisher: Wiley
Publication: August 21, 2015
Imprint: Wiley
Language: English

A comprehensive introduction to statistical methods for data mining and knowledge discovery.

Applications of data mining and ‘big data’ increasingly take center stage in our modern, knowledge-driven society, supported by advances in computing power, automated data acquisition, social media development and interactive, linkable internet software. This book presents a coherent, technical introduction to modern statistical learning and analytics, starting from the core foundations of statistics and probability. It includes an overview of probability and statistical distributions, basics of data manipulation and visualization, and the central components of standard statistical inferences. The majority of the text extends beyond these introductory topics, however, to supervised learning in linear regression, generalized linear models, and classification analytics. Finally, unsupervised learning via dimension reduction, cluster analysis, and market basket analysis are introduced.

Extensive examples using actual data (with sample R programming code) are provided, illustrating diverse informatic sources in genomics, biomedicine, ecological remote sensing, astronomy, socioeconomics, marketing, advertising and finance, among many others.

Statistical Data Analytics:

  • Focuses on methods critically used in data mining and statistical informatics. Coherently describes the methods at an introductory level, with extensions to selected intermediate and advanced techniques.
  • Provides informative, technical details for the highlighted methods.
  • Employs the open-source R language as the computational vehicle – along with its burgeoning collection of online packages – to illustrate many of the analyses contained in the book.
  • Concludes each chapter with a range of interesting and challenging homework exercises using actual data from a variety of informatic application areas.

This book will appeal as a classroom or training text to intermediate and advanced undergraduates, and to beginning graduate students, with sufficient background in calculus and matrix algebra. It will also serve as a source-book on the foundations of statistical informatics and data analytics to practitioners who regularly apply statistical learning to their modern data.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

A comprehensive introduction to statistical methods for data mining and knowledge discovery.

Applications of data mining and ‘big data’ increasingly take center stage in our modern, knowledge-driven society, supported by advances in computing power, automated data acquisition, social media development and interactive, linkable internet software. This book presents a coherent, technical introduction to modern statistical learning and analytics, starting from the core foundations of statistics and probability. It includes an overview of probability and statistical distributions, basics of data manipulation and visualization, and the central components of standard statistical inferences. The majority of the text extends beyond these introductory topics, however, to supervised learning in linear regression, generalized linear models, and classification analytics. Finally, unsupervised learning via dimension reduction, cluster analysis, and market basket analysis are introduced.

Extensive examples using actual data (with sample R programming code) are provided, illustrating diverse informatic sources in genomics, biomedicine, ecological remote sensing, astronomy, socioeconomics, marketing, advertising and finance, among many others.

Statistical Data Analytics:

This book will appeal as a classroom or training text to intermediate and advanced undergraduates, and to beginning graduate students, with sufficient background in calculus and matrix algebra. It will also serve as a source-book on the foundations of statistical informatics and data analytics to practitioners who regularly apply statistical learning to their modern data.

More books from Wiley

Cover of the book Handbook of Biomedical Telemetry by Walter W. Piegorsch
Cover of the book Office 2011 for Mac All-in-One For Dummies by Walter W. Piegorsch
Cover of the book HTML5 For Dummies Quick Reference by Walter W. Piegorsch
Cover of the book The Millionaire Dropout by Walter W. Piegorsch
Cover of the book Mastering VMware vSphere 5.5 by Walter W. Piegorsch
Cover of the book Charting Secrets by Walter W. Piegorsch
Cover of the book Listed Volatility and Variance Derivatives by Walter W. Piegorsch
Cover of the book The Power of Self-Confidence by Walter W. Piegorsch
Cover of the book AD / HD For Dummies by Walter W. Piegorsch
Cover of the book Group Policy by Walter W. Piegorsch
Cover of the book American Literature in Context to 1865 by Walter W. Piegorsch
Cover of the book Wiley Not-for-Profit GAAP 2015 by Walter W. Piegorsch
Cover of the book Beyond Basic Statistics by Walter W. Piegorsch
Cover of the book Professional SharePoint 2013 Administration by Walter W. Piegorsch
Cover of the book CCNA Routing and Switching Practice Tests by Walter W. Piegorsch
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy