Statistics and Scaling in Turbulent Rayleigh-Bénard Convection

Nonfiction, Science & Nature, Science, Physics, Thermodynamics, Technology, Engineering, Mechanical
Cover of the book Statistics and Scaling in Turbulent Rayleigh-Bénard Convection by Emily S.C. Ching, Springer Singapore
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Emily S.C. Ching ISBN: 9789814560238
Publisher: Springer Singapore Publication: August 13, 2013
Imprint: Springer Language: English
Author: Emily S.C. Ching
ISBN: 9789814560238
Publisher: Springer Singapore
Publication: August 13, 2013
Imprint: Springer
Language: English

This Brief addresses two issues of interest of turbulent Rayleigh-Bénard convection. The first issue is the characterization and understanding of the statistics of the velocity and temperature fluctuations in the system. The second issue is the revelation and understanding of the nature of the scaling behavior of the velocity temperature structure functions. The problem under the Oberbeck-Boussinesq approximation is formulated. The statistical tools, including probability density functions (PDF) and conditional statistics, for studying fluctuations are introduced, and implicit PDF formulae for fluctuations obeying certain statistical symmetries are derived. Applications of  these PDF formulae to study the fluctuations in turbulent Rayleigh-Bénard convection are then discussed. The phenomenology of the different types of scaling behavior: the Bolgiano-Obhukov scaling behavior when buoyancy effects are significant and the Kolmogorov-Obukhov-Corrsin scaling behavior when they are not, is introduced. A crossover between the two types of scaling behavior is expected to occur at the Bolgiano length scale above which buoyancy is important. The experimental observations are reviewed. In the central region of the convective cell, the Kolmogorov-Obukhov-Corrsin scaling behavior has been observed. On the other hand, the Bolgiano-Obukhov scaling remains elusive only until recently. By studying the dependence of the conditional temperature structure functions on the locally averaged thermal dissipation rate, evidence for the Bolgiano-Obukhov scaling has recently been found near the bottom plate. The different behaviors observed in the two regions could be attributed to the different size of the Bolgiano scale. What physics determines the relative size of the Bolgiano scale remains to be understood. The Brief is concluded by a discussion of these outstanding issues.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This Brief addresses two issues of interest of turbulent Rayleigh-Bénard convection. The first issue is the characterization and understanding of the statistics of the velocity and temperature fluctuations in the system. The second issue is the revelation and understanding of the nature of the scaling behavior of the velocity temperature structure functions. The problem under the Oberbeck-Boussinesq approximation is formulated. The statistical tools, including probability density functions (PDF) and conditional statistics, for studying fluctuations are introduced, and implicit PDF formulae for fluctuations obeying certain statistical symmetries are derived. Applications of  these PDF formulae to study the fluctuations in turbulent Rayleigh-Bénard convection are then discussed. The phenomenology of the different types of scaling behavior: the Bolgiano-Obhukov scaling behavior when buoyancy effects are significant and the Kolmogorov-Obukhov-Corrsin scaling behavior when they are not, is introduced. A crossover between the two types of scaling behavior is expected to occur at the Bolgiano length scale above which buoyancy is important. The experimental observations are reviewed. In the central region of the convective cell, the Kolmogorov-Obukhov-Corrsin scaling behavior has been observed. On the other hand, the Bolgiano-Obukhov scaling remains elusive only until recently. By studying the dependence of the conditional temperature structure functions on the locally averaged thermal dissipation rate, evidence for the Bolgiano-Obukhov scaling has recently been found near the bottom plate. The different behaviors observed in the two regions could be attributed to the different size of the Bolgiano scale. What physics determines the relative size of the Bolgiano scale remains to be understood. The Brief is concluded by a discussion of these outstanding issues.

More books from Springer Singapore

Cover of the book Parallel-Fed Planar Dipole Antenna Arrays for Low-Observable Platforms by Emily S.C. Ching
Cover of the book Regulations and Applications of Ethics in Business Practice by Emily S.C. Ching
Cover of the book Facing China as a New Global Superpower by Emily S.C. Ching
Cover of the book Ethics and Sustainability in Accounting and Finance, Volume I by Emily S.C. Ching
Cover of the book Computer Assisted Orthopaedic Surgery for Hip and Knee by Emily S.C. Ching
Cover of the book School-based Partnerships in Teacher Education by Emily S.C. Ching
Cover of the book Man–Machine–Environment System Engineering by Emily S.C. Ching
Cover of the book Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics Volume 1 by Emily S.C. Ching
Cover of the book Fundamentals of EM Design of Radar Absorbing Structures (RAS) by Emily S.C. Ching
Cover of the book Biotechnological Approaches for Medicinal and Aromatic Plants by Emily S.C. Ching
Cover of the book Engineering Research Methodology by Emily S.C. Ching
Cover of the book China's National Balance Sheet by Emily S.C. Ching
Cover of the book Poisson Point Processes and Their Application to Markov Processes by Emily S.C. Ching
Cover of the book Exercise for Cardiovascular Disease Prevention and Treatment by Emily S.C. Ching
Cover of the book Quantitative Tourism Research in Asia by Emily S.C. Ching
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy