Structure of Space and the Submicroscopic Deterministic Concept of Physics

Nonfiction, Science & Nature, Science, Physics, Mathematical Physics, General Physics
Cover of the book Structure of Space and the Submicroscopic Deterministic Concept of Physics by Volodymyr Krasnoholovets, Apple Academic Press
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Volodymyr Krasnoholovets ISBN: 9781315341385
Publisher: Apple Academic Press Publication: July 6, 2017
Imprint: Apple Academic Press Language: English
Author: Volodymyr Krasnoholovets
ISBN: 9781315341385
Publisher: Apple Academic Press
Publication: July 6, 2017
Imprint: Apple Academic Press
Language: English

This book, Structure of Space and the Submicroscopic Deterministic Concept of Physics, completely formalizes fundamental physics by showing that all space, which consists of objects and distances, arises from the same origin: manifold of sets. A continuously organized mathematical lattice of topological balls represents the primary substrate named the tessellattice. All fundamental particles arise as local fractal deformations of the tessellattice. The motion of such particulate balls through the tessellattice causes it to deform neighboring cells, which generates a cloud of a new kind of spatial excitations named ‘inertons’. Thus, so-called "hidden variables" introduced in the past by de Broglie, Bohm and Vigier have acquired a sense of real quasiparticles of space.This theory of space unambiguously answers such challenging issues as: what is mass, what is charge, what is a photon, what is the wave psi-function, what is a neutrino, what are the nuclear forces, and so on. The submicroscopic concept uncovers new peculiar properties of quantum systems, especially the dynamics of particles within a section equal to the particle’s de Broglie wavelength, which are fundamentally impossible for quantum mechanics. This concept, thoroughly discussed in the book, allows one to study complex problems in quantum optics and quantum electrodynamics in detail, to disclose an inner world of particle physics by exposing the structure of quarks and nucleons in real space, and to derive gravity as the transfer of local deformations of space by inertons which in turn completely solves the problems of dark matter and dark energy. Inertons have revealed themselves in a number of experiments carried out in condensed media, plasma, nuclear physics and astrophysics, which are described in this book together with prospects for future studies in both fundamental and applied physics.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book, Structure of Space and the Submicroscopic Deterministic Concept of Physics, completely formalizes fundamental physics by showing that all space, which consists of objects and distances, arises from the same origin: manifold of sets. A continuously organized mathematical lattice of topological balls represents the primary substrate named the tessellattice. All fundamental particles arise as local fractal deformations of the tessellattice. The motion of such particulate balls through the tessellattice causes it to deform neighboring cells, which generates a cloud of a new kind of spatial excitations named ‘inertons’. Thus, so-called "hidden variables" introduced in the past by de Broglie, Bohm and Vigier have acquired a sense of real quasiparticles of space.This theory of space unambiguously answers such challenging issues as: what is mass, what is charge, what is a photon, what is the wave psi-function, what is a neutrino, what are the nuclear forces, and so on. The submicroscopic concept uncovers new peculiar properties of quantum systems, especially the dynamics of particles within a section equal to the particle’s de Broglie wavelength, which are fundamentally impossible for quantum mechanics. This concept, thoroughly discussed in the book, allows one to study complex problems in quantum optics and quantum electrodynamics in detail, to disclose an inner world of particle physics by exposing the structure of quarks and nucleons in real space, and to derive gravity as the transfer of local deformations of space by inertons which in turn completely solves the problems of dark matter and dark energy. Inertons have revealed themselves in a number of experiments carried out in condensed media, plasma, nuclear physics and astrophysics, which are described in this book together with prospects for future studies in both fundamental and applied physics.

More books from Apple Academic Press

Cover of the book Food Toxicology by Volodymyr Krasnoholovets
Cover of the book Applied Food Science and Engineering with Industrial Applications by Volodymyr Krasnoholovets
Cover of the book Food Security and Child Malnutrition by Volodymyr Krasnoholovets
Cover of the book Green Chemistry for Sustainable Biofuel Production by Volodymyr Krasnoholovets
Cover of the book Technological Interventions in the Processing of Fruits and Vegetables by Volodymyr Krasnoholovets
Cover of the book Emerging Technologies in Agricultural Engineering by Volodymyr Krasnoholovets
Cover of the book Climate Change and the Oceanic Carbon Cycle by Volodymyr Krasnoholovets
Cover of the book Physical Chemistry for Chemists and Chemical Engineers by Volodymyr Krasnoholovets
Cover of the book Medical Tourism and Wellness by Volodymyr Krasnoholovets
Cover of the book The Chemical Century by Volodymyr Krasnoholovets
Cover of the book Biocatalysis and Agricultural Biotechnology: Fundamentals, Advances, and Practices for a Greener Future by Volodymyr Krasnoholovets
Cover of the book Novel Applications in Polymers and Waste Management by Volodymyr Krasnoholovets
Cover of the book Biology and Ecology of Toxic Pufferfish by Volodymyr Krasnoholovets
Cover of the book Nanoscience and Nanoengineering by Volodymyr Krasnoholovets
Cover of the book Peanut Agriculture and Production Technology by Volodymyr Krasnoholovets
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy