Syzygies and Homotopy Theory

Nonfiction, Science & Nature, Mathematics, Group Theory, Algebra
Cover of the book Syzygies and Homotopy Theory by F.E.A. Johnson, Springer London
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: F.E.A. Johnson ISBN: 9781447122944
Publisher: Springer London Publication: November 17, 2011
Imprint: Springer Language: English
Author: F.E.A. Johnson
ISBN: 9781447122944
Publisher: Springer London
Publication: November 17, 2011
Imprint: Springer
Language: English

The most important invariant of a topological space is its fundamental group. When this is trivial, the resulting homotopy theory is well researched and familiar. In the general case, however, homotopy theory over nontrivial fundamental groups is much more problematic and far less well understood.

 

Syzygies and Homotopy Theory explores the problem of nonsimply connected homotopy in the first nontrivial cases and presents, for the first time, a systematic rehabilitation of Hilbert's method of syzygies in the context of non-simply connected homotopy theory. The first part of the book is theoretical, formulated to allow a general finitely presented group as a fundamental group. The innovation here is to regard syzygies as stable modules rather than minimal modules. Inevitably this forces a reconsideration of the problems of noncancellation; these are confronted in the second, practical, part of the book. In particular, the second part of the book considers how the theory works out in detail for the specific examples F**n´F where F**n is a free group of rank n and F is finite. Another innovation is to parametrize the first syzygy in terms of the more familiar class of stably free modules. Furthermore, detailed description of these stably free modules is effected by a suitable modification of the method of Milnor squares.

 

The theory developed within this book has potential applications in various branches of algebra, including homological algebra, ring theory and K-theory. Syzygies and Homotopy Theory will be of interest to researchers and also to graduate students with a background in algebra and algebraic topology.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The most important invariant of a topological space is its fundamental group. When this is trivial, the resulting homotopy theory is well researched and familiar. In the general case, however, homotopy theory over nontrivial fundamental groups is much more problematic and far less well understood.

 

Syzygies and Homotopy Theory explores the problem of nonsimply connected homotopy in the first nontrivial cases and presents, for the first time, a systematic rehabilitation of Hilbert's method of syzygies in the context of non-simply connected homotopy theory. The first part of the book is theoretical, formulated to allow a general finitely presented group as a fundamental group. The innovation here is to regard syzygies as stable modules rather than minimal modules. Inevitably this forces a reconsideration of the problems of noncancellation; these are confronted in the second, practical, part of the book. In particular, the second part of the book considers how the theory works out in detail for the specific examples F**n´F where F**n is a free group of rank n and F is finite. Another innovation is to parametrize the first syzygy in terms of the more familiar class of stably free modules. Furthermore, detailed description of these stably free modules is effected by a suitable modification of the method of Milnor squares.

 

The theory developed within this book has potential applications in various branches of algebra, including homological algebra, ring theory and K-theory. Syzygies and Homotopy Theory will be of interest to researchers and also to graduate students with a background in algebra and algebraic topology.

More books from Springer London

Cover of the book Paediatric Orthopaedics in Clinical Practice by F.E.A. Johnson
Cover of the book Controversies in the Management of Gynecological Cancers by F.E.A. Johnson
Cover of the book Exploring RANDOMNESS by F.E.A. Johnson
Cover of the book Social Media Retrieval by F.E.A. Johnson
Cover of the book Online Scheduling in Manufacturing by F.E.A. Johnson
Cover of the book Endocrine Surgery by F.E.A. Johnson
Cover of the book Warehousing in the Global Supply Chain by F.E.A. Johnson
Cover of the book Breast Cancer by F.E.A. Johnson
Cover of the book Principles of Health Interoperability HL7 and SNOMED by F.E.A. Johnson
Cover of the book Composite Materials by F.E.A. Johnson
Cover of the book Cleaner Combustion by F.E.A. Johnson
Cover of the book Cellular and Molecular Biology of Atherosclerosis by F.E.A. Johnson
Cover of the book Evidence Synthesis in Healthcare by F.E.A. Johnson
Cover of the book Pathology of the Pancreas by F.E.A. Johnson
Cover of the book Evaluation of Cancer Screening by F.E.A. Johnson
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy