The Spectrum of Hyperbolic Surfaces

Nonfiction, Science & Nature, Mathematics, Mathematical Analysis, Geometry
Cover of the book The Spectrum of Hyperbolic Surfaces by Nicolas Bergeron, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Nicolas Bergeron ISBN: 9783319276663
Publisher: Springer International Publishing Publication: February 19, 2016
Imprint: Springer Language: English
Author: Nicolas Bergeron
ISBN: 9783319276663
Publisher: Springer International Publishing
Publication: February 19, 2016
Imprint: Springer
Language: English

This text is an introduction to the spectral theory of the Laplacian on compact or finite area hyperbolic surfaces. For some of these surfaces, called “arithmetic hyperbolic surfaces”, the eigenfunctions are of arithmetic nature, and one may use analytic tools as well as powerful methods in number theory to study them.

After an introduction to the hyperbolic geometry of surfaces, with a special emphasis on those of arithmetic type, and then an introduction to spectral analytic methods on the Laplace operator on these surfaces, the author develops the analogy between geometry (closed geodesics) and arithmetic (prime numbers) in proving the Selberg trace formula. Along with important number theoretic applications, the author exhibits applications of these tools to the spectral statistics of the Laplacian and the quantum unique ergodicity property. The latter refers to the arithmetic quantum unique ergodicity theorem, recently proved by Elon Lindenstrauss.

The fruit of several graduate level courses at Orsay and Jussieu, The Spectrum of Hyperbolic Surfaces allows the reader to review an array of classical results and then to be led towards very active areas in modern mathematics.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This text is an introduction to the spectral theory of the Laplacian on compact or finite area hyperbolic surfaces. For some of these surfaces, called “arithmetic hyperbolic surfaces”, the eigenfunctions are of arithmetic nature, and one may use analytic tools as well as powerful methods in number theory to study them.

After an introduction to the hyperbolic geometry of surfaces, with a special emphasis on those of arithmetic type, and then an introduction to spectral analytic methods on the Laplace operator on these surfaces, the author develops the analogy between geometry (closed geodesics) and arithmetic (prime numbers) in proving the Selberg trace formula. Along with important number theoretic applications, the author exhibits applications of these tools to the spectral statistics of the Laplacian and the quantum unique ergodicity property. The latter refers to the arithmetic quantum unique ergodicity theorem, recently proved by Elon Lindenstrauss.

The fruit of several graduate level courses at Orsay and Jussieu, The Spectrum of Hyperbolic Surfaces allows the reader to review an array of classical results and then to be led towards very active areas in modern mathematics.

More books from Springer International Publishing

Cover of the book Sound - Perception - Performance by Nicolas Bergeron
Cover of the book Building Digital Government Strategies by Nicolas Bergeron
Cover of the book Enhancing Professional Knowledge of Pre-Service Science Teacher Education by Self-Study Research by Nicolas Bergeron
Cover of the book Bone Morphogenetic Proteins: Systems Biology Regulators by Nicolas Bergeron
Cover of the book Delinquent Youth in a Transforming China by Nicolas Bergeron
Cover of the book SH Domains by Nicolas Bergeron
Cover of the book The Yeomanry Cavalry and Military Identities in Rural Britain, 1815–1914 by Nicolas Bergeron
Cover of the book The Cassini-Huygens Visit to Saturn by Nicolas Bergeron
Cover of the book Berichte zur Lebensmittelsicherheit 2013 by Nicolas Bergeron
Cover of the book High-Impact Weather Events over the SAARC Region by Nicolas Bergeron
Cover of the book Kinetic Theory of Nonequilibrium Ensembles, Irreversible Thermodynamics, and Generalized Hydrodynamics by Nicolas Bergeron
Cover of the book Progress in Life Cycle Assessment 2018 by Nicolas Bergeron
Cover of the book The Ethics of Policing and Imprisonment by Nicolas Bergeron
Cover of the book Quantum Mechanical Models of Metal Surfaces and Nanoparticles by Nicolas Bergeron
Cover of the book Hybrid Systems, Optimal Control and Hybrid Vehicles by Nicolas Bergeron
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy