The Theory of Hardy's Z-Function

Nonfiction, Science & Nature, Mathematics, Number Theory, Science
Cover of the book The Theory of Hardy's Z-Function by Professor Aleksandar Ivić, Cambridge University Press
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Professor Aleksandar Ivić ISBN: 9781139794350
Publisher: Cambridge University Press Publication: September 27, 2012
Imprint: Cambridge University Press Language: English
Author: Professor Aleksandar Ivić
ISBN: 9781139794350
Publisher: Cambridge University Press
Publication: September 27, 2012
Imprint: Cambridge University Press
Language: English

Hardy's Z-function, related to the Riemann zeta-function ζ(s), was originally utilised by G. H. Hardy to show that ζ(s) has infinitely many zeros of the form ½+it. It is now amongst the most important functions of analytic number theory, and the Riemann hypothesis, that all complex zeros lie on the line ½+it, is perhaps one of the best known and most important open problems in mathematics. Today Hardy's function has many applications; among others it is used for extensive calculations regarding the zeros of ζ(s). This comprehensive account covers many aspects of Z(t), including the distribution of its zeros, Gram points, moments and Mellin transforms. It features an extensive bibliography and end-of-chapter notes containing comments, remarks and references. The book also provides many open problems to stimulate readers interested in further research.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Hardy's Z-function, related to the Riemann zeta-function ζ(s), was originally utilised by G. H. Hardy to show that ζ(s) has infinitely many zeros of the form ½+it. It is now amongst the most important functions of analytic number theory, and the Riemann hypothesis, that all complex zeros lie on the line ½+it, is perhaps one of the best known and most important open problems in mathematics. Today Hardy's function has many applications; among others it is used for extensive calculations regarding the zeros of ζ(s). This comprehensive account covers many aspects of Z(t), including the distribution of its zeros, Gram points, moments and Mellin transforms. It features an extensive bibliography and end-of-chapter notes containing comments, remarks and references. The book also provides many open problems to stimulate readers interested in further research.

More books from Cambridge University Press

Cover of the book A Handbook for the Study of Mental Health by Professor Aleksandar Ivić
Cover of the book Ranking the World by Professor Aleksandar Ivić
Cover of the book The Values of Literary Studies by Professor Aleksandar Ivić
Cover of the book Portfolio Theory and Risk Management by Professor Aleksandar Ivić
Cover of the book A Concise History of Italy by Professor Aleksandar Ivić
Cover of the book Citizenship in Classical Athens by Professor Aleksandar Ivić
Cover of the book Local Space, Global Life by Professor Aleksandar Ivić
Cover of the book Investigating Pristine Inner Experience by Professor Aleksandar Ivić
Cover of the book Atmospheric Evolution on Inhabited and Lifeless Worlds by Professor Aleksandar Ivić
Cover of the book Religious Networks in the Roman Empire by Professor Aleksandar Ivić
Cover of the book Crafting Strategy by Professor Aleksandar Ivić
Cover of the book Quality Standards, Value Chains, and International Development by Professor Aleksandar Ivić
Cover of the book Quality and Safety in Women's Health by Professor Aleksandar Ivić
Cover of the book The Cambridge Handbook of International Prevention Science by Professor Aleksandar Ivić
Cover of the book Close to Home by Professor Aleksandar Ivić
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy