The X-43A Flight Research Program: Lessons Learned on the Road to Mach 10 - Hyper-X (HXRV), Hypersonic Scramjet, National Aero-Space Plane (NASP), HySTP, Dan Goldin, Fullerton

Nonfiction, Science & Nature, Technology, Aeronautics & Astronautics, Science, Physics, Astrophysics & Space Science
Cover of the book The X-43A Flight Research Program: Lessons Learned on the Road to Mach 10 - Hyper-X (HXRV), Hypersonic Scramjet, National Aero-Space Plane (NASP), HySTP, Dan Goldin, Fullerton by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781310861543
Publisher: Progressive Management Publication: April 29, 2015
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781310861543
Publisher: Progressive Management
Publication: April 29, 2015
Imprint: Smashwords Edition
Language: English

Professionally converted for accurate flowing-text e-book format reproduction, this NASA report provides a comprehensive history of the X-43A Hyper-X (Hypersonic Experiment) program. In this NASA project, a supersonic combustion ramjet (scramjet) engine was flight tested on a subscale vehicle. The X-43A Hyper-X Research Vehicle (HXRV) was launched from a B-52B mothership, then boosted to the test speed by a modified Pegasus rocket first stage, called the Hyper-X Launch Vehicle (HXLV). Once at the proper speed and altitude, the X-43A separated from the booster, stabilized itself, and then the engine test began. Although wind-tunnel scramjet engine tests had begun in the late 1950s, before the Hyper-X program there had never been an actual in-flight test of such an engine integrated with an appropriate airframe. Thus, while the scramjet had successfully operated in the artificial airflow of wind tunnels, the concept had yet to be proven in "real air." These conditions meant changes in density and temperature, as well as changes in angle of attack and sideslip of a free-flying vehicle. A wind tunnel is limited in its ability to simulate these subtle factures, which have a major impact on almost any vehicle, but especially that of a scramjet's performance. The Hyper-X project was to provide a real-world benchmark of the ground test data. The full scale X-43A engine would be operated in the wind tunnel, and then flown, and the data from its operation would then be compared with projections. If these matched, the wind tunnel data would be considered a reliable design tool for future scramjet. If there were significant differences, the reasons for these would have to be identified. Until such information was available, scramjets would lack the technological maturity to be considered for future space launch or high-speed atmospheric flight vehicles.

What would eventually become the Hyper-X project had its start within the NASP. This was ironic, as NASP project managers rejected the very idea of a short-term, limited-goal effort built around a subscale vehicle. It took a long time for them to finally accept this approach. Among reasons that the NASP program was focused on development of a full-scale test aircraft was the belief of many researchers and contractors that data from a subscale scramjet could not be scaled up to a full-size engine without introducing errors. Indeed, as time passed, the contractors found that they became less confident that they could predict general performance from specific data points. There were uncertainties in many data points, and those uncertainties changed. For these reasons, all of the contractors believed that only a prototype near-full-scale vehicle with a maximum speed above Mach 20 would give them real confidence in their performance predictions for a single-stage-to-orbit design.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Professionally converted for accurate flowing-text e-book format reproduction, this NASA report provides a comprehensive history of the X-43A Hyper-X (Hypersonic Experiment) program. In this NASA project, a supersonic combustion ramjet (scramjet) engine was flight tested on a subscale vehicle. The X-43A Hyper-X Research Vehicle (HXRV) was launched from a B-52B mothership, then boosted to the test speed by a modified Pegasus rocket first stage, called the Hyper-X Launch Vehicle (HXLV). Once at the proper speed and altitude, the X-43A separated from the booster, stabilized itself, and then the engine test began. Although wind-tunnel scramjet engine tests had begun in the late 1950s, before the Hyper-X program there had never been an actual in-flight test of such an engine integrated with an appropriate airframe. Thus, while the scramjet had successfully operated in the artificial airflow of wind tunnels, the concept had yet to be proven in "real air." These conditions meant changes in density and temperature, as well as changes in angle of attack and sideslip of a free-flying vehicle. A wind tunnel is limited in its ability to simulate these subtle factures, which have a major impact on almost any vehicle, but especially that of a scramjet's performance. The Hyper-X project was to provide a real-world benchmark of the ground test data. The full scale X-43A engine would be operated in the wind tunnel, and then flown, and the data from its operation would then be compared with projections. If these matched, the wind tunnel data would be considered a reliable design tool for future scramjet. If there were significant differences, the reasons for these would have to be identified. Until such information was available, scramjets would lack the technological maturity to be considered for future space launch or high-speed atmospheric flight vehicles.

What would eventually become the Hyper-X project had its start within the NASP. This was ironic, as NASP project managers rejected the very idea of a short-term, limited-goal effort built around a subscale vehicle. It took a long time for them to finally accept this approach. Among reasons that the NASP program was focused on development of a full-scale test aircraft was the belief of many researchers and contractors that data from a subscale scramjet could not be scaled up to a full-size engine without introducing errors. Indeed, as time passed, the contractors found that they became less confident that they could predict general performance from specific data points. There were uncertainties in many data points, and those uncertainties changed. For these reasons, all of the contractors believed that only a prototype near-full-scale vehicle with a maximum speed above Mach 20 would give them real confidence in their performance predictions for a single-stage-to-orbit design.

More books from Progressive Management

Cover of the book NASA and the Environment: The Case of Ozone Depletion (NASA SP-2005-4538) by Progressive Management
Cover of the book The Neglect of Long-Range Escort Development During the Interwar Years (1918-1943) - P-51 Mustang, Martin B-10 Bomber, Boeing P-26, Consolidated B-30, Major General Claire Chennault by Progressive Management
Cover of the book 21st Century FEMA Study Course: Introduction to the Defense Priorities and Allocations System (ISS-245.a), Implementing DPAS (IS-246.11) - Including Case Studies by Progressive Management
Cover of the book Sink or Swim: The Marine Corps Capacity to Conduct a Marine Expeditionary Brigade Amphibious Assault Using Expeditionary Maneuver Warfare - MEB Assault, Shipping Issues, Air Assault, Lift, Gulf War by Progressive Management
Cover of the book 21st Century U.S. Military Manuals: Army National Guard Training - Operational Training Programs, Specialized Training, Antiterrorism, Aviation, Combat Training Centers by Progressive Management
Cover of the book Apollo and America's Moon Landing Program - Oral Histories of Managers, Engineers, and Workers (Set 6) Brock Stone, Ernst Stuhlinger, von Ehrenfried by Progressive Management
Cover of the book Space Shuttle NASA Mission Report: STS-1, April 1981 - Young and Crippen Pilot Columbia on the First Space Shuttle Mission - Complete Technical Details of All Aspects of the Historic Flight by Progressive Management
Cover of the book Department of Defense Report to Congress on Future Unmanned Aircraft Systems Training, Operations, and Sustainability by Progressive Management
Cover of the book Flight Research: Problems Encountered and What They Should Teach Us - Lunar Landing Research Vehicle, X-15, YF-12 Blackbird, P-51 Mustang, Lifting Bodies by Progressive Management
Cover of the book Marines in World War II Commemorative Series: The Final Campaign: Marines in the Victory on Okinawa, Ryukyuan Islands, Death of Ernie Pyle, Shuri Islands by Progressive Management
Cover of the book A Guide to the Study and Use of Military History: Great Historians, American and World Military History, World War, Museums and Collections, Academic World, Army School System, Art, Field Detachment by Progressive Management
Cover of the book 2013 Master Guide to Syria and the Syrian Chemical Weapons Crisis: Threat of U.S. Military Strike by Obama, Congressional Options, Sarin Nerve Gas, Civil War, Rebel Groups, Bashar al-Assad by Progressive Management
Cover of the book 21st Century Cellulosic Ethanol, Biomass, and Biofuels: Wood Chips, Stalks, Switchgrass, Plant Products, Feedstocks, Cellulose Conversion Processes, Research Plans by Progressive Management
Cover of the book Roadmap for Bioenergy and Biobased Products in the United States: Plant Science, Markets, Feedstock Systems, Harvesting and Treatment, Biorefinery, Oils, Sugars, and Protein Platforms by Progressive Management
Cover of the book Rockets and People: Volume IV: The Moon Race, the N-1 Moon Rocket, Salyut Space Stations, Soyuz 11 Tragedy, Energiya-Buran Space Shuttle, plus Bonus 1967 American Report on Soviet Program by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy