Uncertainty Modelling in Data Science

Nonfiction, Computers, Advanced Computing, Artificial Intelligence, General Computing
Cover of the book Uncertainty Modelling in Data Science by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319975474
Publisher: Springer International Publishing Publication: July 24, 2018
Imprint: Springer Language: English
Author:
ISBN: 9783319975474
Publisher: Springer International Publishing
Publication: July 24, 2018
Imprint: Springer
Language: English

This book features 29 peer-reviewed papers presented at the 9th International Conference on Soft Methods in Probability and Statistics (SMPS 2018), which was held in conjunction with the 5th International Conference on Belief Functions (BELIEF 2018) in Compiègne, France on September 17–21, 2018. It includes foundational, methodological and applied contributions on topics as varied as imprecise data handling, linguistic summaries, model coherence, imprecise Markov chains, and robust optimisation. These proceedings were produced using EasyChair.

Over recent decades, interest in extensions and alternatives to probability and statistics has increased significantly in diverse areas, including decision-making, data mining and machine learning, and optimisation. This interest stems from the need to enrich existing models, in order to include different facets of uncertainty, like ignorance, vagueness, randomness, conflict or imprecision. Frameworks such as rough sets, fuzzy sets, fuzzy random variables, random sets, belief functions, possibility theory, imprecise probabilities, lower previsions, and desirable gambles all share this goal, but have emerged from different needs.

The advances, results and tools presented in this book are important in the ubiquitous and fast-growing fields of data science, machine learning and artificial intelligence. Indeed, an important aspect of some of the learned predictive models is the trust placed in them.

Modelling the uncertainty associated with the data and the models carefully and with principled methods is one of the means of increasing this trust, as the model will then be able to distinguish between reliable and less reliable predictions. In addition, extensions such as fuzzy sets can be explicitly designed to provide interpretable predictive models, facilitating user interaction and increasing trust.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book features 29 peer-reviewed papers presented at the 9th International Conference on Soft Methods in Probability and Statistics (SMPS 2018), which was held in conjunction with the 5th International Conference on Belief Functions (BELIEF 2018) in Compiègne, France on September 17–21, 2018. It includes foundational, methodological and applied contributions on topics as varied as imprecise data handling, linguistic summaries, model coherence, imprecise Markov chains, and robust optimisation. These proceedings were produced using EasyChair.

Over recent decades, interest in extensions and alternatives to probability and statistics has increased significantly in diverse areas, including decision-making, data mining and machine learning, and optimisation. This interest stems from the need to enrich existing models, in order to include different facets of uncertainty, like ignorance, vagueness, randomness, conflict or imprecision. Frameworks such as rough sets, fuzzy sets, fuzzy random variables, random sets, belief functions, possibility theory, imprecise probabilities, lower previsions, and desirable gambles all share this goal, but have emerged from different needs.

The advances, results and tools presented in this book are important in the ubiquitous and fast-growing fields of data science, machine learning and artificial intelligence. Indeed, an important aspect of some of the learned predictive models is the trust placed in them.

Modelling the uncertainty associated with the data and the models carefully and with principled methods is one of the means of increasing this trust, as the model will then be able to distinguish between reliable and less reliable predictions. In addition, extensions such as fuzzy sets can be explicitly designed to provide interpretable predictive models, facilitating user interaction and increasing trust.

More books from Springer International Publishing

Cover of the book Blind Image Deconvolution by
Cover of the book Hormones, Intrauterine Health and Programming by
Cover of the book Nanoscience in Food and Agriculture 5 by
Cover of the book Coastal Zones Ecosystem Services by
Cover of the book The Role of Natural and Constructed Wetlands in Nutrient Cycling and Retention on the Landscape by
Cover of the book Smart Tourism as a Driver for Culture and Sustainability by
Cover of the book Feminism, Capitalism, and Critique by
Cover of the book New Trends in Earth-Science Outreach and Engagement by
Cover of the book Urban Utopias by
Cover of the book Prioritization Theory and Defensive Foreign Policy by
Cover of the book Inductive Logic Programming by
Cover of the book The Life and Death of a Treaty by
Cover of the book Kinetic Theory of Nonequilibrium Ensembles, Irreversible Thermodynamics, and Generalized Hydrodynamics by
Cover of the book Complications in Maxillofacial Cosmetic Surgery by
Cover of the book Criminal Justice and Mental Health by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy