Uncertainty Modelling in Data Science

Nonfiction, Computers, Advanced Computing, Artificial Intelligence, General Computing
Cover of the book Uncertainty Modelling in Data Science by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319975474
Publisher: Springer International Publishing Publication: July 24, 2018
Imprint: Springer Language: English
Author:
ISBN: 9783319975474
Publisher: Springer International Publishing
Publication: July 24, 2018
Imprint: Springer
Language: English

This book features 29 peer-reviewed papers presented at the 9th International Conference on Soft Methods in Probability and Statistics (SMPS 2018), which was held in conjunction with the 5th International Conference on Belief Functions (BELIEF 2018) in Compiègne, France on September 17–21, 2018. It includes foundational, methodological and applied contributions on topics as varied as imprecise data handling, linguistic summaries, model coherence, imprecise Markov chains, and robust optimisation. These proceedings were produced using EasyChair.

Over recent decades, interest in extensions and alternatives to probability and statistics has increased significantly in diverse areas, including decision-making, data mining and machine learning, and optimisation. This interest stems from the need to enrich existing models, in order to include different facets of uncertainty, like ignorance, vagueness, randomness, conflict or imprecision. Frameworks such as rough sets, fuzzy sets, fuzzy random variables, random sets, belief functions, possibility theory, imprecise probabilities, lower previsions, and desirable gambles all share this goal, but have emerged from different needs.

The advances, results and tools presented in this book are important in the ubiquitous and fast-growing fields of data science, machine learning and artificial intelligence. Indeed, an important aspect of some of the learned predictive models is the trust placed in them.

Modelling the uncertainty associated with the data and the models carefully and with principled methods is one of the means of increasing this trust, as the model will then be able to distinguish between reliable and less reliable predictions. In addition, extensions such as fuzzy sets can be explicitly designed to provide interpretable predictive models, facilitating user interaction and increasing trust.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book features 29 peer-reviewed papers presented at the 9th International Conference on Soft Methods in Probability and Statistics (SMPS 2018), which was held in conjunction with the 5th International Conference on Belief Functions (BELIEF 2018) in Compiègne, France on September 17–21, 2018. It includes foundational, methodological and applied contributions on topics as varied as imprecise data handling, linguistic summaries, model coherence, imprecise Markov chains, and robust optimisation. These proceedings were produced using EasyChair.

Over recent decades, interest in extensions and alternatives to probability and statistics has increased significantly in diverse areas, including decision-making, data mining and machine learning, and optimisation. This interest stems from the need to enrich existing models, in order to include different facets of uncertainty, like ignorance, vagueness, randomness, conflict or imprecision. Frameworks such as rough sets, fuzzy sets, fuzzy random variables, random sets, belief functions, possibility theory, imprecise probabilities, lower previsions, and desirable gambles all share this goal, but have emerged from different needs.

The advances, results and tools presented in this book are important in the ubiquitous and fast-growing fields of data science, machine learning and artificial intelligence. Indeed, an important aspect of some of the learned predictive models is the trust placed in them.

Modelling the uncertainty associated with the data and the models carefully and with principled methods is one of the means of increasing this trust, as the model will then be able to distinguish between reliable and less reliable predictions. In addition, extensions such as fuzzy sets can be explicitly designed to provide interpretable predictive models, facilitating user interaction and increasing trust.

More books from Springer International Publishing

Cover of the book More than Fighting for Peace? by
Cover of the book Digital Pathology by
Cover of the book Hyperspectral Remote Sensing of Nearshore Water Quality by
Cover of the book The Global Cyber-Vulnerability Report by
Cover of the book Mycobacterial Skin Infections by
Cover of the book The United Kingdom’s Defence After Brexit by
Cover of the book Over-Exploitation of Forests by
Cover of the book MultiMedia Modeling by
Cover of the book Algorithms and Models for the Web Graph by
Cover of the book Wilhelm Röpke (1899–1966) by
Cover of the book Hydrogen Energy by
Cover of the book Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications by
Cover of the book Language Policy Beyond the State by
Cover of the book Immigrants in the Sexual Revolution by
Cover of the book Contemporary Masculinities in the UK and the US by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy