Uncertainty Quantification in Computational Fluid Dynamics

Nonfiction, Science & Nature, Mathematics, Counting & Numeration, Computers, Advanced Computing, Computer Science
Cover of the book Uncertainty Quantification in Computational Fluid Dynamics by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319008851
Publisher: Springer International Publishing Publication: September 20, 2013
Imprint: Springer Language: English
Author:
ISBN: 9783319008851
Publisher: Springer International Publishing
Publication: September 20, 2013
Imprint: Springer
Language: English

Fluid flows are characterized by uncertain inputs such as random initial data, material and flux coefficients, and boundary conditions. The current volume addresses the pertinent issue of efficiently computing the flow uncertainty, given this initial randomness. It collects seven original review articles that cover improved versions of the Monte Carlo method (the so-called multi-level Monte Carlo method (MLMC)), moment-based stochastic Galerkin methods and modified versions of the stochastic collocation methods that use adaptive stencil selection of the ENO-WENO type in both physical and stochastic space. The methods are also complemented by concrete applications such as flows around aerofoils and rockets, problems of aeroelasticity (fluid-structure interactions), and shallow water flows for propagating water waves. The wealth of numerical examples provide evidence on the suitability of each proposed method as well as comparisons of different approaches.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Fluid flows are characterized by uncertain inputs such as random initial data, material and flux coefficients, and boundary conditions. The current volume addresses the pertinent issue of efficiently computing the flow uncertainty, given this initial randomness. It collects seven original review articles that cover improved versions of the Monte Carlo method (the so-called multi-level Monte Carlo method (MLMC)), moment-based stochastic Galerkin methods and modified versions of the stochastic collocation methods that use adaptive stencil selection of the ENO-WENO type in both physical and stochastic space. The methods are also complemented by concrete applications such as flows around aerofoils and rockets, problems of aeroelasticity (fluid-structure interactions), and shallow water flows for propagating water waves. The wealth of numerical examples provide evidence on the suitability of each proposed method as well as comparisons of different approaches.

More books from Springer International Publishing

Cover of the book Environmental Nanotechnology by
Cover of the book Pattern Recognition by
Cover of the book Clinical Management of Male Infertility by
Cover of the book Designing Usable and Secure Software with IRIS and CAIRIS by
Cover of the book Summability Calculus by
Cover of the book Atlas of Pediatric Brain Tumors by
Cover of the book Quantum Photonics by
Cover of the book Women, Development and Peacebuilding in Africa by
Cover of the book Religious Perspectives on Social Responsibility in Health by
Cover of the book Learning from Error in Policing by
Cover of the book The sine-Gordon Model and its Applications by
Cover of the book Density-Functional Methods for Excited States by
Cover of the book Korea-China Relations in History and Contemporary Implications by
Cover of the book International Conference on Wireless, Intelligent, and Distributed Environment for Communication by
Cover of the book The Securitization of the Roma in Europe by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy