Beauville Surfaces and Groups

Nonfiction, Science & Nature, Mathematics, Geometry, Algebra
Cover of the book Beauville Surfaces and Groups by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319138626
Publisher: Springer International Publishing Publication: April 14, 2015
Imprint: Springer Language: English
Author:
ISBN: 9783319138626
Publisher: Springer International Publishing
Publication: April 14, 2015
Imprint: Springer
Language: English

This collection of surveys and research articles explores a fascinating class of varieties: Beauville surfaces. It is the first time that these objects are discussed from the points of view of algebraic geometry as well as group theory. The book also includes various open problems and conjectures related to these surfaces.

Beauville surfaces are a class of rigid regular surfaces of general type, which can be described in a purely algebraic combinatoric way. They play an important role in different fields of mathematics like algebraic geometry, group theory and number theory. The notion of Beauville surface was introduced by Fabrizio Catanese in 2000 and after the first systematic study of these surfaces by Ingrid Bauer, Fabrizio Catanese and Fritz Grunewald, there has been an increasing interest in the subject.

These proceedings reflect the topics of the lectures presented during the workshop ‘Beauville surfaces and groups 2012’, held at Newcastle University, UK in June 2012. This conference brought together, for the first time, experts of different fields of mathematics interested in Beauville surfaces.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This collection of surveys and research articles explores a fascinating class of varieties: Beauville surfaces. It is the first time that these objects are discussed from the points of view of algebraic geometry as well as group theory. The book also includes various open problems and conjectures related to these surfaces.

Beauville surfaces are a class of rigid regular surfaces of general type, which can be described in a purely algebraic combinatoric way. They play an important role in different fields of mathematics like algebraic geometry, group theory and number theory. The notion of Beauville surface was introduced by Fabrizio Catanese in 2000 and after the first systematic study of these surfaces by Ingrid Bauer, Fabrizio Catanese and Fritz Grunewald, there has been an increasing interest in the subject.

These proceedings reflect the topics of the lectures presented during the workshop ‘Beauville surfaces and groups 2012’, held at Newcastle University, UK in June 2012. This conference brought together, for the first time, experts of different fields of mathematics interested in Beauville surfaces.

More books from Springer International Publishing

Cover of the book Formal Techniques for Safety-Critical Systems by
Cover of the book Real-life Applications with Membrane Computing by
Cover of the book Traveling Irishness in the Long Nineteenth Century by
Cover of the book Diagnostic and Therapeutic Nuclear Medicine for Neuroendocrine Tumors by
Cover of the book Back-in-Time and Faster-than-Light Travel in General Relativity by
Cover of the book Fault-Tolerant Digital Microfluidic Biochips by
Cover of the book Computer Aided Verification by
Cover of the book Advances in Multimedia Information Processing -- PCM 2015 by
Cover of the book Foundations of Programming Languages by
Cover of the book Knowledge Creation in Community Development by
Cover of the book Semiconductor Materials for Solar Photovoltaic Cells by
Cover of the book Physical Chemistry from a Different Angle by
Cover of the book Designing, Selecting, Implementing and Using APS Systems by
Cover of the book Business Modeling and Software Design by
Cover of the book Radical Social Change in the United States by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy