Beschreibung einer Unterrichtseinheit zur Konstruktion eines Ellipsoid-Modells

Nonfiction, Reference & Language, Education & Teaching, Teaching, Teaching Methods
Cover of the book Beschreibung einer Unterrichtseinheit zur Konstruktion eines Ellipsoid-Modells by Christian Scheuermann, Thomas Schrowe, GRIN Verlag
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Christian Scheuermann, Thomas Schrowe ISBN: 9783638259620
Publisher: GRIN Verlag Publication: March 9, 2004
Imprint: GRIN Verlag Language: German
Author: Christian Scheuermann, Thomas Schrowe
ISBN: 9783638259620
Publisher: GRIN Verlag
Publication: March 9, 2004
Imprint: GRIN Verlag
Language: German

Unterrichtsentwurf aus dem Jahr 2003 im Fachbereich Mathematik - Didaktik, Note: sehr gut (1), Martin-Luther-Universität Halle-Wittenberg (Didaktik der Mathematik), Veranstaltung: Seminar zur Mathematik-Didaktik, Sprache: Deutsch, Abstract: 1.1. Zielstellung Das Ziel dieser Unterrichtseinheit ist es, zu wissen, wie eine Ellipse konstruiert wird, wo sie vorkommt und wie daraus ein Ellipsoid wird. Weiter soll ein selbstüberlegtes Modell des Ellipsoids konstruiert und gebastelt werden. 1.2. Voraussetzungen Wir wollen diese Unterrichtseinheit an die Behandlung des Kreises der Klasse 6 oder 7 ansetzen, d.h. funktionale Zusammenhänge sind hier noch nicht zu betrachten. 1.3. Grobstruktur der Unterrichtseinheit Wir wollen von einer etwas ungewöhnlichen Konstruktion eines Kreises zu der einer Ellipse übergehen und diese noch als schrägen Kegelschnitt darstellen. Nachdem dann die wichtigsten Eigenschaften einer Ellipse besprochen wurden, werden wir den Ellipsoid als Körper der rotierenden Ellipse einführen und versuchen ein Modell zu entwickeln und dann letztendlich zu basteln. 2. Sachanalyse 2.1. Die Ellipse Eine Ellipse lässt sich als Schrägbild eines Kreises darstellen. Da solche Schrägbilder mithilfe von Parallelprojektionen aus Kreisen entstehen, erhält man die folgende Definition. Definition 11: Als Ellipse bezeichnet man jede Parallelprojektion eines Kreises. Bei einer axialen Stauchung oder Streckung eines Kreises entsteht ebenso eine Ellipse. Die Ellipse hier kann als das Bild eines Kreises mit dem Radius a oder als das Bild eines Kreises mit dem Radius b aufgefasst werden. Dies liefert die folgende Ellipsenkonstruktion: Man zeichnet einen Strahl vom Mittelpunkt der beiden Kreise. Nun zeichnet man durch den Schnittpunkt dieses Strahls mit dem kleinen Kreis eine Horizontale und durch den mit dem großen Kreis eine Vertikale. Der Schnittpunkt dieser Horizontalen und Vertikalen ist dann ein Punkt der Ellipse. Hieraus entsteht die nächste Definition einer Ellipse. Definition 21: Eine Ellipse ist das Bild eines Kreises bei einer affinen Abbildung. 1 Vgl: SCHEID, Seite 134

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Unterrichtsentwurf aus dem Jahr 2003 im Fachbereich Mathematik - Didaktik, Note: sehr gut (1), Martin-Luther-Universität Halle-Wittenberg (Didaktik der Mathematik), Veranstaltung: Seminar zur Mathematik-Didaktik, Sprache: Deutsch, Abstract: 1.1. Zielstellung Das Ziel dieser Unterrichtseinheit ist es, zu wissen, wie eine Ellipse konstruiert wird, wo sie vorkommt und wie daraus ein Ellipsoid wird. Weiter soll ein selbstüberlegtes Modell des Ellipsoids konstruiert und gebastelt werden. 1.2. Voraussetzungen Wir wollen diese Unterrichtseinheit an die Behandlung des Kreises der Klasse 6 oder 7 ansetzen, d.h. funktionale Zusammenhänge sind hier noch nicht zu betrachten. 1.3. Grobstruktur der Unterrichtseinheit Wir wollen von einer etwas ungewöhnlichen Konstruktion eines Kreises zu der einer Ellipse übergehen und diese noch als schrägen Kegelschnitt darstellen. Nachdem dann die wichtigsten Eigenschaften einer Ellipse besprochen wurden, werden wir den Ellipsoid als Körper der rotierenden Ellipse einführen und versuchen ein Modell zu entwickeln und dann letztendlich zu basteln. 2. Sachanalyse 2.1. Die Ellipse Eine Ellipse lässt sich als Schrägbild eines Kreises darstellen. Da solche Schrägbilder mithilfe von Parallelprojektionen aus Kreisen entstehen, erhält man die folgende Definition. Definition 11: Als Ellipse bezeichnet man jede Parallelprojektion eines Kreises. Bei einer axialen Stauchung oder Streckung eines Kreises entsteht ebenso eine Ellipse. Die Ellipse hier kann als das Bild eines Kreises mit dem Radius a oder als das Bild eines Kreises mit dem Radius b aufgefasst werden. Dies liefert die folgende Ellipsenkonstruktion: Man zeichnet einen Strahl vom Mittelpunkt der beiden Kreise. Nun zeichnet man durch den Schnittpunkt dieses Strahls mit dem kleinen Kreis eine Horizontale und durch den mit dem großen Kreis eine Vertikale. Der Schnittpunkt dieser Horizontalen und Vertikalen ist dann ein Punkt der Ellipse. Hieraus entsteht die nächste Definition einer Ellipse. Definition 21: Eine Ellipse ist das Bild eines Kreises bei einer affinen Abbildung. 1 Vgl: SCHEID, Seite 134

More books from GRIN Verlag

Cover of the book Das Negativ-Schöne by Christian Scheuermann, Thomas Schrowe
Cover of the book Das lukanische Verhältnis zu den Armen und den Reichen by Christian Scheuermann, Thomas Schrowe
Cover of the book Analyse von 'Löcher/Holes' von Louis Sachar by Christian Scheuermann, Thomas Schrowe
Cover of the book Sozialmanagement - Verschlechterung oder Veredlung sozialer Arbeit by Christian Scheuermann, Thomas Schrowe
Cover of the book Export vs Direktinvestition. Bedingungen, Chancen und Risiken alternativer Internationalisierungsstrategien deutscher KMU in Mittel- und Osteuropa by Christian Scheuermann, Thomas Schrowe
Cover of the book Neutestamentliche Exegese zu Lukas-Evangelium 12, 49-53 by Christian Scheuermann, Thomas Schrowe
Cover of the book Bedeutung des 'Scheme of Arrangement' als Restrukturierungsinstrument für deutsche Unternehmen by Christian Scheuermann, Thomas Schrowe
Cover of the book Unvollständige Informationen auf dem Arbeitsmarkt by Christian Scheuermann, Thomas Schrowe
Cover of the book Die Auflösungsklage nach § 133 HGB by Christian Scheuermann, Thomas Schrowe
Cover of the book Die Zulässigkeit der Videoüberwachung von Arbeitsplätzen mit öffentlich zugänglichen und nicht öffentlich zugänglichen Räumen by Christian Scheuermann, Thomas Schrowe
Cover of the book Entwicklung eines kennzahlenbasierten Steuerungssystems für einen Hotelleriebetrieb by Christian Scheuermann, Thomas Schrowe
Cover of the book Widerstand als Widerspruch? Zum Gedanken eines Widerstandsrechts in Thomas Hobbes' 'Leviathan' by Christian Scheuermann, Thomas Schrowe
Cover of the book Familienberatung - Überblick über verschiedene Beratungsansätze und Studien zum Thema by Christian Scheuermann, Thomas Schrowe
Cover of the book Die bionische Anwendbarkeit des Prinzips der Facettenaugen by Christian Scheuermann, Thomas Schrowe
Cover of the book Der Einfluss der betrieblichen Mitbestimmung auf das Innovationsverhalten in Unternehmen by Christian Scheuermann, Thomas Schrowe
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy