Beschreibung einer Unterrichtseinheit zur Konstruktion eines Ellipsoid-Modells

Nonfiction, Reference & Language, Education & Teaching, Teaching, Teaching Methods
Cover of the book Beschreibung einer Unterrichtseinheit zur Konstruktion eines Ellipsoid-Modells by Christian Scheuermann, Thomas Schrowe, GRIN Verlag
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Christian Scheuermann, Thomas Schrowe ISBN: 9783638259620
Publisher: GRIN Verlag Publication: March 9, 2004
Imprint: GRIN Verlag Language: German
Author: Christian Scheuermann, Thomas Schrowe
ISBN: 9783638259620
Publisher: GRIN Verlag
Publication: March 9, 2004
Imprint: GRIN Verlag
Language: German

Unterrichtsentwurf aus dem Jahr 2003 im Fachbereich Mathematik - Didaktik, Note: sehr gut (1), Martin-Luther-Universität Halle-Wittenberg (Didaktik der Mathematik), Veranstaltung: Seminar zur Mathematik-Didaktik, Sprache: Deutsch, Abstract: 1.1. Zielstellung Das Ziel dieser Unterrichtseinheit ist es, zu wissen, wie eine Ellipse konstruiert wird, wo sie vorkommt und wie daraus ein Ellipsoid wird. Weiter soll ein selbstüberlegtes Modell des Ellipsoids konstruiert und gebastelt werden. 1.2. Voraussetzungen Wir wollen diese Unterrichtseinheit an die Behandlung des Kreises der Klasse 6 oder 7 ansetzen, d.h. funktionale Zusammenhänge sind hier noch nicht zu betrachten. 1.3. Grobstruktur der Unterrichtseinheit Wir wollen von einer etwas ungewöhnlichen Konstruktion eines Kreises zu der einer Ellipse übergehen und diese noch als schrägen Kegelschnitt darstellen. Nachdem dann die wichtigsten Eigenschaften einer Ellipse besprochen wurden, werden wir den Ellipsoid als Körper der rotierenden Ellipse einführen und versuchen ein Modell zu entwickeln und dann letztendlich zu basteln. 2. Sachanalyse 2.1. Die Ellipse Eine Ellipse lässt sich als Schrägbild eines Kreises darstellen. Da solche Schrägbilder mithilfe von Parallelprojektionen aus Kreisen entstehen, erhält man die folgende Definition. Definition 11: Als Ellipse bezeichnet man jede Parallelprojektion eines Kreises. Bei einer axialen Stauchung oder Streckung eines Kreises entsteht ebenso eine Ellipse. Die Ellipse hier kann als das Bild eines Kreises mit dem Radius a oder als das Bild eines Kreises mit dem Radius b aufgefasst werden. Dies liefert die folgende Ellipsenkonstruktion: Man zeichnet einen Strahl vom Mittelpunkt der beiden Kreise. Nun zeichnet man durch den Schnittpunkt dieses Strahls mit dem kleinen Kreis eine Horizontale und durch den mit dem großen Kreis eine Vertikale. Der Schnittpunkt dieser Horizontalen und Vertikalen ist dann ein Punkt der Ellipse. Hieraus entsteht die nächste Definition einer Ellipse. Definition 21: Eine Ellipse ist das Bild eines Kreises bei einer affinen Abbildung. 1 Vgl: SCHEID, Seite 134

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Unterrichtsentwurf aus dem Jahr 2003 im Fachbereich Mathematik - Didaktik, Note: sehr gut (1), Martin-Luther-Universität Halle-Wittenberg (Didaktik der Mathematik), Veranstaltung: Seminar zur Mathematik-Didaktik, Sprache: Deutsch, Abstract: 1.1. Zielstellung Das Ziel dieser Unterrichtseinheit ist es, zu wissen, wie eine Ellipse konstruiert wird, wo sie vorkommt und wie daraus ein Ellipsoid wird. Weiter soll ein selbstüberlegtes Modell des Ellipsoids konstruiert und gebastelt werden. 1.2. Voraussetzungen Wir wollen diese Unterrichtseinheit an die Behandlung des Kreises der Klasse 6 oder 7 ansetzen, d.h. funktionale Zusammenhänge sind hier noch nicht zu betrachten. 1.3. Grobstruktur der Unterrichtseinheit Wir wollen von einer etwas ungewöhnlichen Konstruktion eines Kreises zu der einer Ellipse übergehen und diese noch als schrägen Kegelschnitt darstellen. Nachdem dann die wichtigsten Eigenschaften einer Ellipse besprochen wurden, werden wir den Ellipsoid als Körper der rotierenden Ellipse einführen und versuchen ein Modell zu entwickeln und dann letztendlich zu basteln. 2. Sachanalyse 2.1. Die Ellipse Eine Ellipse lässt sich als Schrägbild eines Kreises darstellen. Da solche Schrägbilder mithilfe von Parallelprojektionen aus Kreisen entstehen, erhält man die folgende Definition. Definition 11: Als Ellipse bezeichnet man jede Parallelprojektion eines Kreises. Bei einer axialen Stauchung oder Streckung eines Kreises entsteht ebenso eine Ellipse. Die Ellipse hier kann als das Bild eines Kreises mit dem Radius a oder als das Bild eines Kreises mit dem Radius b aufgefasst werden. Dies liefert die folgende Ellipsenkonstruktion: Man zeichnet einen Strahl vom Mittelpunkt der beiden Kreise. Nun zeichnet man durch den Schnittpunkt dieses Strahls mit dem kleinen Kreis eine Horizontale und durch den mit dem großen Kreis eine Vertikale. Der Schnittpunkt dieser Horizontalen und Vertikalen ist dann ein Punkt der Ellipse. Hieraus entsteht die nächste Definition einer Ellipse. Definition 21: Eine Ellipse ist das Bild eines Kreises bei einer affinen Abbildung. 1 Vgl: SCHEID, Seite 134

More books from GRIN Verlag

Cover of the book Kostenplanung und -steuerung für die gemeinsame kostenorientierte Produktentwicklung in Supply Chains by Christian Scheuermann, Thomas Schrowe
Cover of the book Johannes Paul der Große? Johannes Paul II. in seiner kirchenhistorischen Bedeutung by Christian Scheuermann, Thomas Schrowe
Cover of the book Ecocriticism on Human Genetic Engineering in Aldous Huxley's 'Brave New World' by Christian Scheuermann, Thomas Schrowe
Cover of the book Die Lehre von der Einheitstäterschaft by Christian Scheuermann, Thomas Schrowe
Cover of the book Weibliche Prostitution in der Frühen Neuzeit by Christian Scheuermann, Thomas Schrowe
Cover of the book Das Ost-West Fördergefälle in Deutschland - Beurteilung aus regionalwissenschaftlicher und volkswirtschaftlicher Sicht by Christian Scheuermann, Thomas Schrowe
Cover of the book China's influence in Africa by Christian Scheuermann, Thomas Schrowe
Cover of the book Die Elemente eines Risikomanagement-Systems by Christian Scheuermann, Thomas Schrowe
Cover of the book Allein am Nil - War das Debakel am Nil der BRD ein Erfolg der DDR-Außenpolitik? by Christian Scheuermann, Thomas Schrowe
Cover of the book Ubiquitous Computing. Innovation mit der Allgegenwärtigkeit der Informationstechnologie im Alltag by Christian Scheuermann, Thomas Schrowe
Cover of the book Finanzierung und Investition by Christian Scheuermann, Thomas Schrowe
Cover of the book Wettbewerbsrechtliche Abmahnungen unter betriebswirtschaftlichen Gesichtspunkten by Christian Scheuermann, Thomas Schrowe
Cover of the book Analcharakter, Zwangscharakter und Zwangsneurose. Die anal-sadistische Stufe als Ausgangsbasis der Entwicklung nach Freud by Christian Scheuermann, Thomas Schrowe
Cover of the book Jugend und neue Medien. Nutzen und Gefahren für Jugendliche by Christian Scheuermann, Thomas Schrowe
Cover of the book Exegese zum Matthäus-Evangelium Kapitel 18, 10-14 by Christian Scheuermann, Thomas Schrowe
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy