Chinese Handwriting Recognition: An Algorithmic Perspective

Nonfiction, Computers, Advanced Computing, Engineering, Computer Vision, Application Software, Computer Graphics, General Computing
Cover of the book Chinese Handwriting Recognition: An Algorithmic Perspective by Tonghua Su, Springer Berlin Heidelberg
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Tonghua Su ISBN: 9783642318122
Publisher: Springer Berlin Heidelberg Publication: January 11, 2013
Imprint: Springer Language: English
Author: Tonghua Su
ISBN: 9783642318122
Publisher: Springer Berlin Heidelberg
Publication: January 11, 2013
Imprint: Springer
Language: English

Designing machines that can read handwriting like human beings has been an ambitious goal for more than half a century, driving talented researchers to explore diverse approaches. Obstacles have often been encountered that at first appeared insurmountable but were indeed overcome before long. Yet some open issues remain to be solved. As an indispensable branch, Chinese handwriting recognition has been termed as one of the most difficult Pattern Recognition tasks. Chinese handwriting recognition poses its own unique challenges, such as huge variations in strokes, diversity of writing styles, and a large set of confusable categories. With ever-increasing training data, researchers have pursued elaborate algorithms to discern characters from different categories and compensate for the sample variations within the same category. As a result, Chinese handwriting recognition has evolved substantially and amazing achievements can be seen. This book introduces integral algorithms used in Chinese handwriting recognition and the applications of Chinese handwriting recogniers. The first part of the book covers both widespread canonical algorithms to a reliable recognizer and newly developed scalable methods in Chinese handwriting recognition. The recognition of Chinese handwritten text is presented systematically, including instructive guidelines for collecting samples, novel recognition paradigms, distributed discriminative learning of appearance models and distributed estimation of contextual models for large categories, in addition to celebrated methods, e.g. Gradient features, MQDF and HMMs. In the second part of this book, endeavors are made to create a friendlier human-machine interface through application of Chinese handwriting recognition. Four scenarios are exemplified: grid-assisted input, shortest moving input, handwritten micro-blog, and instant handwriting messenger. All the while, the book moves from basic to more complex approaches, also providing a list for further reading with literature comments.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Designing machines that can read handwriting like human beings has been an ambitious goal for more than half a century, driving talented researchers to explore diverse approaches. Obstacles have often been encountered that at first appeared insurmountable but were indeed overcome before long. Yet some open issues remain to be solved. As an indispensable branch, Chinese handwriting recognition has been termed as one of the most difficult Pattern Recognition tasks. Chinese handwriting recognition poses its own unique challenges, such as huge variations in strokes, diversity of writing styles, and a large set of confusable categories. With ever-increasing training data, researchers have pursued elaborate algorithms to discern characters from different categories and compensate for the sample variations within the same category. As a result, Chinese handwriting recognition has evolved substantially and amazing achievements can be seen. This book introduces integral algorithms used in Chinese handwriting recognition and the applications of Chinese handwriting recogniers. The first part of the book covers both widespread canonical algorithms to a reliable recognizer and newly developed scalable methods in Chinese handwriting recognition. The recognition of Chinese handwritten text is presented systematically, including instructive guidelines for collecting samples, novel recognition paradigms, distributed discriminative learning of appearance models and distributed estimation of contextual models for large categories, in addition to celebrated methods, e.g. Gradient features, MQDF and HMMs. In the second part of this book, endeavors are made to create a friendlier human-machine interface through application of Chinese handwriting recognition. Four scenarios are exemplified: grid-assisted input, shortest moving input, handwritten micro-blog, and instant handwriting messenger. All the while, the book moves from basic to more complex approaches, also providing a list for further reading with literature comments.

More books from Springer Berlin Heidelberg

Cover of the book Financial Supervision in the 21st Century by Tonghua Su
Cover of the book Desert Arthropods: Life History Variations by Tonghua Su
Cover of the book Business Technology Organization by Tonghua Su
Cover of the book Ärztliche Gespräche, die wirken by Tonghua Su
Cover of the book Cell Kinetics of the Inflammatory Reaction by Tonghua Su
Cover of the book Mobility of Health Professionals by Tonghua Su
Cover of the book Vertigo by Tonghua Su
Cover of the book Geoelectromagnetic Investigation of the Earth’s Crust and Mantle by Tonghua Su
Cover of the book Mergers & Acquisitions in China by Tonghua Su
Cover of the book Probabilistic Approaches for Geotechnical Site Characterization and Slope Stability Analysis by Tonghua Su
Cover of the book Model-Based Software Performance Analysis by Tonghua Su
Cover of the book Geothermie by Tonghua Su
Cover of the book Compressive Optic Nerve Lesions at the Optic Canal by Tonghua Su
Cover of the book Static Analysis by Tonghua Su
Cover of the book Small Organic Molecules on Surfaces by Tonghua Su
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy