Combined Cycle Driven Efficiency for Next Generation Nuclear Power Plants

An Innovative Design Approach

Nonfiction, Science & Nature, Technology, Nuclear Energy, Science, Physics, Thermodynamics
Cover of the book Combined Cycle Driven Efficiency for Next Generation Nuclear Power Plants by Bahman Zohuri, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Bahman Zohuri ISBN: 9783319155609
Publisher: Springer International Publishing Publication: March 14, 2015
Imprint: Springer Language: English
Author: Bahman Zohuri
ISBN: 9783319155609
Publisher: Springer International Publishing
Publication: March 14, 2015
Imprint: Springer
Language: English

Introduces the concept of combined cycles for next generation nuclear power plants, explaining how recent advances in gas turbines have made these systems increasingly desirable for efficiency gains and cost-of-ownership reduction. Promulgates modelling and analysis techniques to identify opportunities for increased thermodynamic efficiency and decreased water usage over current Light Water Reactor (LWR) systems. Examines all power conversion aspects, from the fluid exiting the reactor to energy releases into the environment, with special focus on heat exchangers and turbo-machinery. Provides examples of small projects to facilitate nuanced understanding of the theories and implementation of combined-cycle nuclear plants.

This book explores combined cycle driven efficiency of new nuclear power plants and describes how to model and analyze a nuclear heated multi-turbine power conversion system operating with atmospheric air as the working fluid. The included studies are intended to identify paths for future work on next generation nuclear power plants (GEN-IV), leveraging advances in natural-gas-fired turbines that enable coupling salt-cooled, helium-cooled, and sodium-cooled reactors to a Nuclear Air-Brayton Combined Cycle (NACC). These reactors provide the option of operating base-load nuclear plants with variable electricity output to the grid using natural gas or stored heat to produce peak power. The author describes overall system architecture, components and detailed modelling results of Brayton-Rankine Combined Cycle power conversion systems and Recuperated Brayton Cycle systems, since they offer the highest overall energy conversion efficiencies. With ever-higher temperatures predicted in GEN-IV plants, this book’s investigation of potential avenues for thermodynamic efficiency gains will be of great interest to nuclear engineers and researchers, as well as power plant operators and students.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Introduces the concept of combined cycles for next generation nuclear power plants, explaining how recent advances in gas turbines have made these systems increasingly desirable for efficiency gains and cost-of-ownership reduction. Promulgates modelling and analysis techniques to identify opportunities for increased thermodynamic efficiency and decreased water usage over current Light Water Reactor (LWR) systems. Examines all power conversion aspects, from the fluid exiting the reactor to energy releases into the environment, with special focus on heat exchangers and turbo-machinery. Provides examples of small projects to facilitate nuanced understanding of the theories and implementation of combined-cycle nuclear plants.

This book explores combined cycle driven efficiency of new nuclear power plants and describes how to model and analyze a nuclear heated multi-turbine power conversion system operating with atmospheric air as the working fluid. The included studies are intended to identify paths for future work on next generation nuclear power plants (GEN-IV), leveraging advances in natural-gas-fired turbines that enable coupling salt-cooled, helium-cooled, and sodium-cooled reactors to a Nuclear Air-Brayton Combined Cycle (NACC). These reactors provide the option of operating base-load nuclear plants with variable electricity output to the grid using natural gas or stored heat to produce peak power. The author describes overall system architecture, components and detailed modelling results of Brayton-Rankine Combined Cycle power conversion systems and Recuperated Brayton Cycle systems, since they offer the highest overall energy conversion efficiencies. With ever-higher temperatures predicted in GEN-IV plants, this book’s investigation of potential avenues for thermodynamic efficiency gains will be of great interest to nuclear engineers and researchers, as well as power plant operators and students.

More books from Springer International Publishing

Cover of the book Trauma and Lived Religion by Bahman Zohuri
Cover of the book Innovative Start-Ups and the Distribution of Human Capital by Bahman Zohuri
Cover of the book Certainty in Law by Bahman Zohuri
Cover of the book Mathematical Analysis, Probability and Applications – Plenary Lectures by Bahman Zohuri
Cover of the book Liability for Antitrust Law Infringements & Protection of IP Rights in Distribution by Bahman Zohuri
Cover of the book Bioethical Insights into Values and Policy by Bahman Zohuri
Cover of the book Ego-histories of France and the Second World War by Bahman Zohuri
Cover of the book Low-Carbon Energy in Africa and Latin America by Bahman Zohuri
Cover of the book African Immigrant Traders in Inner City Johannesburg by Bahman Zohuri
Cover of the book Entrepreneurship, Business and Economics - Vol. 2 by Bahman Zohuri
Cover of the book Early Gastrointestinal Cancers II: Rectal Cancer by Bahman Zohuri
Cover of the book Metaheuristic Algorithms for Image Segmentation: Theory and Applications by Bahman Zohuri
Cover of the book The Engineering Capstone Course by Bahman Zohuri
Cover of the book Mechanisms of Molecular Carcinogenesis – Volume 2 by Bahman Zohuri
Cover of the book Earthquake Engineering and Structural Dynamics in Memory of Ragnar Sigbjörnsson by Bahman Zohuri
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy