Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling

Nonfiction, Science & Nature, Science, Biological Sciences, Botany
Cover of the book Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling by , Springer Netherlands
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9789401774819
Publisher: Springer Netherlands Publication: June 14, 2016
Imprint: Springer Language: English
Author:
ISBN: 9789401774819
Publisher: Springer Netherlands
Publication: June 14, 2016
Imprint: Springer
Language: English

An Introduction that describes the origin of cytochrome notation also connects to the history of the field, focusing on research in England in the pre-World War II era.  The start of the modern era of studies on structure-function of cytochromes and energy-transducing membrane proteins was marked by the 1988 Nobel Prize in Chemistry, given to J. Deisenhofer, H. Michel, and R. Huber for determination of the crystal structure of the bacterial photosynthetic reaction center. An ab initio logic of presentation in the book discusses the evolution of cytochromes and hemes, followed by theoretical perspectives on electron transfer in proteins and specifically in cytochromes. There is an extensive description of the molecular structures of cytochromes and cytochrome complexes from eukaryotic and prokaryotic sources, bacterial, plant and animal. The presentation of atomic structure information has a major role in these discussions, and makes an important contribution to the broad field of membrane protein structure-function. 

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

An Introduction that describes the origin of cytochrome notation also connects to the history of the field, focusing on research in England in the pre-World War II era.  The start of the modern era of studies on structure-function of cytochromes and energy-transducing membrane proteins was marked by the 1988 Nobel Prize in Chemistry, given to J. Deisenhofer, H. Michel, and R. Huber for determination of the crystal structure of the bacterial photosynthetic reaction center. An ab initio logic of presentation in the book discusses the evolution of cytochromes and hemes, followed by theoretical perspectives on electron transfer in proteins and specifically in cytochromes. There is an extensive description of the molecular structures of cytochromes and cytochrome complexes from eukaryotic and prokaryotic sources, bacterial, plant and animal. The presentation of atomic structure information has a major role in these discussions, and makes an important contribution to the broad field of membrane protein structure-function. 

More books from Springer Netherlands

Cover of the book In the Shadow of Descartes by
Cover of the book Agriculture and Public Goods by
Cover of the book Apoptosome by
Cover of the book Mineral Processing and the Environment by
Cover of the book Inflammatory Bowel Diseases by
Cover of the book Mining Social Networks and Security Informatics by
Cover of the book Laser - Surface Interactions by
Cover of the book Other Minds by
Cover of the book A Logical Theory of Teaching by
Cover of the book Cilia and Nervous System Development and Function by
Cover of the book The Geology and Tectonic Settings of China's Mineral Deposits by
Cover of the book Equilibrium Statistical Mechanics of Lattice Models by
Cover of the book Mechanisms of Carcinogenesis by
Cover of the book Common Infections by
Cover of the book Legal Aspects of Joint Ventures in Eastern Europe by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy