Differential Geometry

Connections, Curvature, and Characteristic Classes

Nonfiction, Science & Nature, Mathematics, Geometry
Cover of the book Differential Geometry by Loring W. Tu, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Loring W. Tu ISBN: 9783319550848
Publisher: Springer International Publishing Publication: June 1, 2017
Imprint: Springer Language: English
Author: Loring W. Tu
ISBN: 9783319550848
Publisher: Springer International Publishing
Publication: June 1, 2017
Imprint: Springer
Language: English

This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of  de Rham cohomology is required for the last third of the text.

Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included.

Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields.  The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of  de Rham cohomology is required for the last third of the text.

Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included.

Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields.  The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.

More books from Springer International Publishing

Cover of the book Routine Outcome Monitoring in Couple and Family Therapy by Loring W. Tu
Cover of the book Mediated Campaigns and Populism in Europe by Loring W. Tu
Cover of the book Opportunistic Spectrum Sharing in Cognitive Radio Networks by Loring W. Tu
Cover of the book Sea Snails by Loring W. Tu
Cover of the book Recent Trends in Materials Science and Applications by Loring W. Tu
Cover of the book Aggressive and Violent Peasant Elites in the Nordic Countries, C. 1500-1700 by Loring W. Tu
Cover of the book Control Strategies for Advanced Driver Assistance Systems and Autonomous Driving Functions by Loring W. Tu
Cover of the book Advances in Production Management Systems: Innovative Production Management Towards Sustainable Growth by Loring W. Tu
Cover of the book GABAB Receptor by Loring W. Tu
Cover of the book Growing up Working Class by Loring W. Tu
Cover of the book Dependent Data in Social Sciences Research by Loring W. Tu
Cover of the book The Role of Renewable Energy Technology in Holistic Community Development by Loring W. Tu
Cover of the book Information Systems Architecture and Technology: Proceedings of 37th International Conference on Information Systems Architecture and Technology – ISAT 2016 – Part IV by Loring W. Tu
Cover of the book New Developments in Tissue Engineering and Regeneration by Loring W. Tu
Cover of the book The Global Debt Crisis and Its Socioeconomic Implications by Loring W. Tu
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy