Dynamical Systems-Based Soil Mechanics

Nonfiction, Science & Nature, Technology, Engineering, Civil
Cover of the book Dynamical Systems-Based Soil Mechanics by Paul Joseph, CRC Press
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Paul Joseph ISBN: 9781351757164
Publisher: CRC Press Publication: April 24, 2017
Imprint: CRC Press Language: English
Author: Paul Joseph
ISBN: 9781351757164
Publisher: CRC Press
Publication: April 24, 2017
Imprint: CRC Press
Language: English

This book is a short yet rigorous course on a new paradigm in soil mechanics, one that holds that soil deformation occurs as a simple friction-based Poisson process in which soil particles move to their final position at random shear strains. It originates from work by Casagrande’s soil mechanics group at Harvard University that found that an aggregate of soil particles when sheared reaches a "steady-state" condition, a finding in line with the thermodynamics of dissipative systems. The book unpacks this new paradigm as it applies to soils. The theory explains fundamental, ubiquitous soil behaviors and relationships used in soils engineering daily thousands of times across the world, but whose material bases so far have been unknown. These include for example, why for one-dimensional consolidation, the e-log σ line is linear, and why Cα/Cc is a constant for a given soil. The subtext of the book is that with this paradigm, the scientific method of trying to falsify hypotheses fully drives advances in the field, i.e., that soil mechanics now strictly qualifies as a science that, in turn, informs geotechnical engineering.

The audience for the book is senior undergraduates, graduate students, academics, and researchers as well as industry professionals, particularly geotechnical engineers. It will also be useful to structural engineers, highway engineers, military engineers, persons in the construction industry, as well as planetary scientists. Because its fundamental findings hold for any mass of particles like soils, the theory applies not just to soils, but also to powders, grains etc. so long as these are under pseudo-static (no inertial effects) conditions.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book is a short yet rigorous course on a new paradigm in soil mechanics, one that holds that soil deformation occurs as a simple friction-based Poisson process in which soil particles move to their final position at random shear strains. It originates from work by Casagrande’s soil mechanics group at Harvard University that found that an aggregate of soil particles when sheared reaches a "steady-state" condition, a finding in line with the thermodynamics of dissipative systems. The book unpacks this new paradigm as it applies to soils. The theory explains fundamental, ubiquitous soil behaviors and relationships used in soils engineering daily thousands of times across the world, but whose material bases so far have been unknown. These include for example, why for one-dimensional consolidation, the e-log σ line is linear, and why Cα/Cc is a constant for a given soil. The subtext of the book is that with this paradigm, the scientific method of trying to falsify hypotheses fully drives advances in the field, i.e., that soil mechanics now strictly qualifies as a science that, in turn, informs geotechnical engineering.

The audience for the book is senior undergraduates, graduate students, academics, and researchers as well as industry professionals, particularly geotechnical engineers. It will also be useful to structural engineers, highway engineers, military engineers, persons in the construction industry, as well as planetary scientists. Because its fundamental findings hold for any mass of particles like soils, the theory applies not just to soils, but also to powders, grains etc. so long as these are under pseudo-static (no inertial effects) conditions.

More books from CRC Press

Cover of the book Energetic Materials by Paul Joseph
Cover of the book Holistic Mobile Game Development with Unity by Paul Joseph
Cover of the book Introductory Fisheries Analyses with R by Paul Joseph
Cover of the book Mobile Communications and Public Health by Paul Joseph
Cover of the book Chromatin by Paul Joseph
Cover of the book Friday Forever by Paul Joseph
Cover of the book Python for Bioinformatics by Paul Joseph
Cover of the book What Every Engineer Should Know About Excel by Paul Joseph
Cover of the book Actions and Invariants of Algebraic Groups by Paul Joseph
Cover of the book Advanced Soil Mechanics, Fifth Edition by Paul Joseph
Cover of the book Handbook of Natural Toxins by Paul Joseph
Cover of the book Primary and Secondary Manufacturing of Polymer Matrix Composites by Paul Joseph
Cover of the book Introduction to Polymer Rheology and Processing by Paul Joseph
Cover of the book Daylight Performance of Buildings by Paul Joseph
Cover of the book From AI to Robotics by Paul Joseph
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy