Inside the International Space Station (ISS): Science Research Accomplishments During the Assembly Years, An Analysis of Results from 2000-2008

Nonfiction, Science & Nature, Technology, Aeronautics & Astronautics, Science, Physics, Astrophysics & Space Science
Cover of the book Inside the International Space Station (ISS): Science Research Accomplishments During the Assembly Years, An Analysis of Results from 2000-2008 by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781476363844
Publisher: Progressive Management Publication: May 15, 2012
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781476363844
Publisher: Progressive Management
Publication: May 15, 2012
Imprint: Smashwords Edition
Language: English

The International Space Station (ISS) celebrated 10 years of operations in November 2008. Today, it is more than a human outpost in low Earth orbit (LEO). It is also an international science laboratory hosting state-of-the-art scientific facilities that support fundamental and applied research across the range of physical and biological sciences. The launch of the first ISS element in 1998, the Russian Zarya module, was a highly visible milestone for international cooperation in human exploration. Later, when the first international crew that included Bill Shepard, Sergei Krikalev, and Yuri Gidzenko, moved into the ISS to establish a continuous human presence in space, a new, global chapter in the history of human space flight was opened. As of this writing, 18 multinational crews comprising 52 astronauts and cosmonauts have called the ISS their home and workplace since November 2000. Dozens more have visited and assisted construction and science activities. While the ISS did not support permanent human crews during the first 2 years of operations (November 1998 to November 2000), it hosted a few early science experiments months before the first international crew took up residence. Since that time—and simultaneous with the complicated task of ISS construction and overcoming impacts from the tragic Columbia accident—science returns from the ISS have been growing at a steady pace. From Expedition 0 through 15, 138 experiments have been operated on the ISS, supporting research for hundreds of ground-based investigators from the U.S. and International Partners. Many experiments are carried forward over several ISS increments, allowing for additional experimental runs and data collection.

This report focuses on the experimental results collected to date, including scientific publications from studies that are based on operational data. Today, NASA's priorities for research aboard the ISS center on understanding human health during long-duration missions, researching effective countermeasures for long-duration crewmembers, and researching and testing new technologies that can be used for future Exploration crews and spacecraft. Most research also supports new understandings, methods, or applications that are relevant to life on Earth, such as understanding effective protocols to protect against loss of bone density or better methods for producing stronger metal alloys. Experiment results have already been used in applications as diverse as the manufacture of solar cell and insulation materials for new spacecraft and the verification of complex numerical models for behavior of fluids in fuel tanks.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The International Space Station (ISS) celebrated 10 years of operations in November 2008. Today, it is more than a human outpost in low Earth orbit (LEO). It is also an international science laboratory hosting state-of-the-art scientific facilities that support fundamental and applied research across the range of physical and biological sciences. The launch of the first ISS element in 1998, the Russian Zarya module, was a highly visible milestone for international cooperation in human exploration. Later, when the first international crew that included Bill Shepard, Sergei Krikalev, and Yuri Gidzenko, moved into the ISS to establish a continuous human presence in space, a new, global chapter in the history of human space flight was opened. As of this writing, 18 multinational crews comprising 52 astronauts and cosmonauts have called the ISS their home and workplace since November 2000. Dozens more have visited and assisted construction and science activities. While the ISS did not support permanent human crews during the first 2 years of operations (November 1998 to November 2000), it hosted a few early science experiments months before the first international crew took up residence. Since that time—and simultaneous with the complicated task of ISS construction and overcoming impacts from the tragic Columbia accident—science returns from the ISS have been growing at a steady pace. From Expedition 0 through 15, 138 experiments have been operated on the ISS, supporting research for hundreds of ground-based investigators from the U.S. and International Partners. Many experiments are carried forward over several ISS increments, allowing for additional experimental runs and data collection.

This report focuses on the experimental results collected to date, including scientific publications from studies that are based on operational data. Today, NASA's priorities for research aboard the ISS center on understanding human health during long-duration missions, researching effective countermeasures for long-duration crewmembers, and researching and testing new technologies that can be used for future Exploration crews and spacecraft. Most research also supports new understandings, methods, or applications that are relevant to life on Earth, such as understanding effective protocols to protect against loss of bone density or better methods for producing stronger metal alloys. Experiment results have already been used in applications as diverse as the manufacture of solar cell and insulation materials for new spacecraft and the verification of complex numerical models for behavior of fluids in fuel tanks.

More books from Progressive Management

Cover of the book Environmental Protest and Civil Society in China: Social Media, Environmental Activists, Distance from Beijing, Protests, Internal Migration, Environmental Degradation, NGOs, Communist Party by Progressive Management
Cover of the book 21st Century U.S. Military Manuals: Use of Army National Guard Aircraft - Transportation and Use Policy, Authorized Travel Categories, Duty Status, Air Categories, Aeromedical by Progressive Management
Cover of the book Designing the Bayous: The Control of Water in the Atchafalaya Basin - 1800-1995, Mississippi River Flood Control, Battle Over Floodways, Environmental Activists, Early Efforts, Louisiana Style by Progressive Management
Cover of the book Like a Thunderbolt: The Lafayette Escadrille and the Advent of American Pursuit in World War I - Sopwith Camel, American Pilots, Aces, William Thaw, Foulois by Progressive Management
Cover of the book You Cannot Surge Trust: Combined Naval Operations of the Royal Australian Navy, Canadian Navy, Royal Navy, and United States Navy, 1991-2003 - Arabian Gulf, Operations Stabilise and Enduring Freedom by Progressive Management
Cover of the book 21st Century FEMA Study Course: The Public Works Role in Emergency Management (IS-552) Prevention, Preparedness, Mitigation, Response, Recovery, National Response Framework (NRF), ESF by Progressive Management
Cover of the book Wildland Fire in Ecosystems: Effects of Fire on Air (Rainbow Series) - Smoke Management, Air Quality, Visibility, Haze, Hazardous Air Pollutants, Emissions from Fires, Atmospheric and Plume Chemistry by Progressive Management
Cover of the book United States and Chinese Economic Engagement in Sub-Saharan Africa: A Comparative Analysis - Conventional Aid Attached to Structural and Social Reform, Profit-driven Trade, Western Model Challenged by Progressive Management
Cover of the book U.S. Army Commander's Battle Staff Handbook with Garrison Duties: Fire Support Officer, Engineer, Air Defense Artillery, Signal, Chemical, Chaplain - Determining Staff Functional Capability by Progressive Management
Cover of the book The Hotel Industry's Role in Combatting Sex Trafficking: Employee Training on Proactive, Zero-Tolerance Human Trafficking Stance, Need for Incentive-based Reporting System for Hospitality Industry by Progressive Management
Cover of the book Factors Shaping Japan's Foreign Policy Toward the Senkaku Islands: Chinese Encroachments and Domestic Japanese Politics, Leaders Koizumi, Abe, Ishihara and Noda, Constitution and International Law by Progressive Management
Cover of the book The Struggle for Air Force Independence 1943-1947: Roots of AAF, Marshall and Forrestal, Eisenhower, Truman, Plans for Unification, JCS, Postwar, Moving Toward Autonomy, Establishing the USAF by Progressive Management
Cover of the book Eisenhower: The Leadership Development of Dwight D. Eisenhower and George S. Patton Jr., Military Education, Mentorship, Self-Development, Determination, Ike's Years with MacArthur, Patton in Combat by Progressive Management
Cover of the book Air Force Doctrine Document 3-1, Air Warfare: Fundamentals, Missions, Planning, Training, Exercises, Asymmetric Force, Aerospace Power by Progressive Management
Cover of the book 21st Century Adult Cancer Sourcebook: Prostate Cancer - Clinical Data for Patients, Families, and Physicians by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy