Introduction to HPC with MPI for Data Science

Nonfiction, Computers, General Computing, Programming
Cover of the book Introduction to HPC with MPI for Data Science by Frank Nielsen, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Frank Nielsen ISBN: 9783319219035
Publisher: Springer International Publishing Publication: February 3, 2016
Imprint: Springer Language: English
Author: Frank Nielsen
ISBN: 9783319219035
Publisher: Springer International Publishing
Publication: February 3, 2016
Imprint: Springer
Language: English

This gentle introduction to High Performance Computing (HPC) for Data Science using the Message Passing Interface (MPI) standard has been designed as a first course for undergraduates on parallel programming on distributed memory models, and requires only basic programming notions.

Divided into two parts the first part covers high performance computing using C++ with the Message Passing Interface (MPI) standard followed by a second part providing high-performance data analytics on computer clusters.

In the first part, the fundamental notions of blocking versus non-blocking point-to-point communications, global communications (like broadcast or scatter) and collaborative computations (reduce), with Amdalh and Gustafson speed-up laws are described before addressing parallel sorting and parallel linear algebra on computer clusters. The common ring, torus and hypercube topologies of clusters are then explained and global communication procedures on these topologies are studied. This first part closes with the MapReduce (MR) model of computation well-suited to processing big data using the MPI framework.

In the second part, the book focuses on high-performance data analytics. Flat and hierarchical clustering algorithms are introduced for data exploration along with how to program these algorithms on computer clusters, followed by machine learning classification, and an introduction to graph analytics. This part closes with a concise introduction to data core-sets that let big data problems be amenable to tiny data problems.

Exercises are included at the end of each chapter in order for students to practice the concepts learned, and a final section contains an overall exam which allows them to evaluate how well they have assimilated the material covered in the book.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This gentle introduction to High Performance Computing (HPC) for Data Science using the Message Passing Interface (MPI) standard has been designed as a first course for undergraduates on parallel programming on distributed memory models, and requires only basic programming notions.

Divided into two parts the first part covers high performance computing using C++ with the Message Passing Interface (MPI) standard followed by a second part providing high-performance data analytics on computer clusters.

In the first part, the fundamental notions of blocking versus non-blocking point-to-point communications, global communications (like broadcast or scatter) and collaborative computations (reduce), with Amdalh and Gustafson speed-up laws are described before addressing parallel sorting and parallel linear algebra on computer clusters. The common ring, torus and hypercube topologies of clusters are then explained and global communication procedures on these topologies are studied. This first part closes with the MapReduce (MR) model of computation well-suited to processing big data using the MPI framework.

In the second part, the book focuses on high-performance data analytics. Flat and hierarchical clustering algorithms are introduced for data exploration along with how to program these algorithms on computer clusters, followed by machine learning classification, and an introduction to graph analytics. This part closes with a concise introduction to data core-sets that let big data problems be amenable to tiny data problems.

Exercises are included at the end of each chapter in order for students to practice the concepts learned, and a final section contains an overall exam which allows them to evaluate how well they have assimilated the material covered in the book.

More books from Springer International Publishing

Cover of the book Using Medicine in Science Fiction by Frank Nielsen
Cover of the book Understanding Complex Urban Systems by Frank Nielsen
Cover of the book Safety Factor Profile Control in a Tokamak by Frank Nielsen
Cover of the book Advances in Applied Mathematics by Frank Nielsen
Cover of the book Nature-Inspired Algorithms and Applied Optimization by Frank Nielsen
Cover of the book Unifying Causality and Psychology by Frank Nielsen
Cover of the book Rethinking 21st Century Diversity in Teacher Preparation, K-12 Education, and School Policy by Frank Nielsen
Cover of the book Mapping Sustainability Transitions by Frank Nielsen
Cover of the book Immunotherapy of Melanoma by Frank Nielsen
Cover of the book An Econometric Model of the US Economy by Frank Nielsen
Cover of the book Hand and Finger Injuries in Rock Climbers by Frank Nielsen
Cover of the book PRIMA 2016: Principles and Practice of Multi-Agent Systems by Frank Nielsen
Cover of the book Modeling of Carbon Nanotubes, Graphene and their Composites by Frank Nielsen
Cover of the book Inclusive Policing from the Inside Out by Frank Nielsen
Cover of the book Tropical Seaweed Farming Trends, Problems and Opportunities by Frank Nielsen
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy