New Horizons in Fundamental Physics

Nonfiction, Science & Nature, Science, Physics, Nuclear Physics, Biological Sciences, Molecular Physics
Cover of the book New Horizons in Fundamental Physics by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319441658
Publisher: Springer International Publishing Publication: November 11, 2016
Imprint: Springer Language: English
Author:
ISBN: 9783319441658
Publisher: Springer International Publishing
Publication: November 11, 2016
Imprint: Springer
Language: English

This volume presents the state-of-the-art in selected topics across modern nuclear physics, covering fields of central importance to research and illustrating their connection to many different areas of physics.

It describes recent progress in the study of superheavy and exotic nuclei, which is pushing our knowledge to ever heavier elements and neutron-richer isotopes. Extending nuclear physics to systems that are many times denser than even the core of an atomic nucleus, one enters the realm of the physics of neutron stars and possibly quark stars, a topic that is intensively investigated with many ground-based and outer-space research missions as well as numerous theoretical works. By colliding two nuclei at very high ultra-relativistic energies one can create a fireball of extremely hot matter, reminiscent of the universe very shortly after the big bang, leading to a phase of melted hadrons and free quarks and gluons, the so-called quark-gluon plasma.

These studies tie up with effects of crucial importance in other fields. During the collision of heavy ions, electric fields of extreme strength are produced, potentially destabilizing the vacuum of the atomic physics system, subsequently leading to the decay of the vacuum state and the emission of positrons.  In neutron stars the ultra-dense matter might support extremely high magnetic fields, far beyond anything that can be produced in the laboratory, significantly affecting the stellar properties.

At very high densities general relativity predicts the stellar collapse to a black hole. However, a number of current theoretical activities, modifying Einstein’s theory, point to possible alternative scenarios, where this collapse might be avoided.

These and related topics are addressed in this book in a series of highly readable chapters. In addition, the book includes fundamental analyses of the practicalities involved in transiting to an electricity supply mainly based on renewable energies, investigating this scenario less from an engineering and more from a physics point of view.

While the topics comprise a large scope of activities, the contributions also show an extensive overlap in the methodology and in the analytical and numerical tools involved in tackling these diverse research fields that are the forefront of modern science.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This volume presents the state-of-the-art in selected topics across modern nuclear physics, covering fields of central importance to research and illustrating their connection to many different areas of physics.

It describes recent progress in the study of superheavy and exotic nuclei, which is pushing our knowledge to ever heavier elements and neutron-richer isotopes. Extending nuclear physics to systems that are many times denser than even the core of an atomic nucleus, one enters the realm of the physics of neutron stars and possibly quark stars, a topic that is intensively investigated with many ground-based and outer-space research missions as well as numerous theoretical works. By colliding two nuclei at very high ultra-relativistic energies one can create a fireball of extremely hot matter, reminiscent of the universe very shortly after the big bang, leading to a phase of melted hadrons and free quarks and gluons, the so-called quark-gluon plasma.

These studies tie up with effects of crucial importance in other fields. During the collision of heavy ions, electric fields of extreme strength are produced, potentially destabilizing the vacuum of the atomic physics system, subsequently leading to the decay of the vacuum state and the emission of positrons.  In neutron stars the ultra-dense matter might support extremely high magnetic fields, far beyond anything that can be produced in the laboratory, significantly affecting the stellar properties.

At very high densities general relativity predicts the stellar collapse to a black hole. However, a number of current theoretical activities, modifying Einstein’s theory, point to possible alternative scenarios, where this collapse might be avoided.

These and related topics are addressed in this book in a series of highly readable chapters. In addition, the book includes fundamental analyses of the practicalities involved in transiting to an electricity supply mainly based on renewable energies, investigating this scenario less from an engineering and more from a physics point of view.

While the topics comprise a large scope of activities, the contributions also show an extensive overlap in the methodology and in the analytical and numerical tools involved in tackling these diverse research fields that are the forefront of modern science.

More books from Springer International Publishing

Cover of the book Urban Water Trajectories by
Cover of the book Variational Approach to Gravity Field Theories by
Cover of the book Mitigating Environmental Impact of Petroleum Lubricants by
Cover of the book Complex Networks & Their Applications VI by
Cover of the book Experimental Design Research by
Cover of the book Information Systems Security by
Cover of the book Developing Sustainable Careers Across the Lifespan by
Cover of the book Trends and Applications in Knowledge Discovery and Data Mining by
Cover of the book Parental Responsibility in the Context of Neuroscience and Genetics by
Cover of the book Ethnomathematics and its Diverse Approaches for Mathematics Education by
Cover of the book Technology, Society and Sustainability by
Cover of the book Nonsurgical Lip and Eye Rejuvenation Techniques by
Cover of the book Supersymmetric Grand Unified Theories by
Cover of the book Queens Matter in Early Modern Studies by
Cover of the book Cyber Security for Cyber Physical Systems by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy