Proceedings of ELM 2018

Nonfiction, Computers, Advanced Computing, Artificial Intelligence, General Computing
Cover of the book Proceedings of ELM 2018 by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783030233075
Publisher: Springer International Publishing Publication: June 29, 2019
Imprint: Springer Language: English
Author:
ISBN: 9783030233075
Publisher: Springer International Publishing
Publication: June 29, 2019
Imprint: Springer
Language: English

This book contains some selected papers from the International Conference on Extreme Learning Machine 2018, which was held in Singapore, November 21–23, 2018. This conference provided a forum for academics, researchers and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the ELM technique and brain learning.

Extreme Learning Machines (ELM) aims to enable pervasive learning and pervasive intelligence. As advocated by ELM theories, it is exciting to see the convergence of machine learning and biological learning from the long-term point of view. ELM may be one of the fundamental “learning particles” filling the gaps between machine learning and biological learning (of which activation functions are even unknown). ELM represents a suite of (machine and biological) learning techniques in which hidden neurons need not be tuned: inherited from their ancestors or randomly generated. ELM learning theories show that effective learning algorithms can be derived based on randomly generated hidden neurons (biological neurons, artificial neurons, wavelets, Fourier series, etc.) as long as they are nonlinear piecewise continuous, independent of training data and application environments. Increasingly, evidence from neuroscience suggests that similar principles apply in biological learning systems. ELM theories and algorithms argue that “random hidden neurons” capture an essential aspect of biological learning mechanisms as well as the intuitive sense that the efficiency of biological learning need not rely on computing power of neurons. ELM theories thus hint at possible reasons why the brain is more intelligent and effective than current computers. The main theme of ELM2018 is Hierarchical ELM, AI for IoT, Synergy of Machine Learning and Biological Learning.

This book covers theories, algorithms and applications of ELM. It gives readers a glance at the most recent advances of ELM.

 

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book contains some selected papers from the International Conference on Extreme Learning Machine 2018, which was held in Singapore, November 21–23, 2018. This conference provided a forum for academics, researchers and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the ELM technique and brain learning.

Extreme Learning Machines (ELM) aims to enable pervasive learning and pervasive intelligence. As advocated by ELM theories, it is exciting to see the convergence of machine learning and biological learning from the long-term point of view. ELM may be one of the fundamental “learning particles” filling the gaps between machine learning and biological learning (of which activation functions are even unknown). ELM represents a suite of (machine and biological) learning techniques in which hidden neurons need not be tuned: inherited from their ancestors or randomly generated. ELM learning theories show that effective learning algorithms can be derived based on randomly generated hidden neurons (biological neurons, artificial neurons, wavelets, Fourier series, etc.) as long as they are nonlinear piecewise continuous, independent of training data and application environments. Increasingly, evidence from neuroscience suggests that similar principles apply in biological learning systems. ELM theories and algorithms argue that “random hidden neurons” capture an essential aspect of biological learning mechanisms as well as the intuitive sense that the efficiency of biological learning need not rely on computing power of neurons. ELM theories thus hint at possible reasons why the brain is more intelligent and effective than current computers. The main theme of ELM2018 is Hierarchical ELM, AI for IoT, Synergy of Machine Learning and Biological Learning.

This book covers theories, algorithms and applications of ELM. It gives readers a glance at the most recent advances of ELM.

 

More books from Springer International Publishing

Cover of the book Enhanced Surface Imaging of Crustal Deformation by
Cover of the book Bronislaw Malinowski's Concept of Law by
Cover of the book Managing Diabetic Nephropathies in Clinical Practice by
Cover of the book Judicial Practice, Customary International Criminal Law and Nullum Crimen Sine Lege by
Cover of the book Instrumentation in Earthquake Seismology by
Cover of the book The Poetics of Migration in Contemporary Irish Poetry by
Cover of the book Experimental Design Research by
Cover of the book Mathematical Modelling by
Cover of the book Condensed Matter Applications of AdS/CFT by
Cover of the book Computer Vision – ECCV 2018 by
Cover of the book Ronald J. Fisher: A North American Pioneer in Interactive Conflict Resolution by
Cover of the book Radiation Effects in Polymeric Materials by
Cover of the book Thinking about Contradictions by
Cover of the book Structured Object-Oriented Formal Language and Method by
Cover of the book From Partisan Banking to Open Access by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy