Scaling up Machine Learning

Parallel and Distributed Approaches

Nonfiction, Computers, Advanced Computing, Engineering, Computer Vision, Artificial Intelligence, General Computing
Cover of the book Scaling up Machine Learning by , Cambridge University Press
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781139635578
Publisher: Cambridge University Press Publication: December 30, 2011
Imprint: Cambridge University Press Language: English
Author:
ISBN: 9781139635578
Publisher: Cambridge University Press
Publication: December 30, 2011
Imprint: Cambridge University Press
Language: English

This book presents an integrated collection of representative approaches for scaling up machine learning and data mining methods on parallel and distributed computing platforms. Demand for parallelizing learning algorithms is highly task-specific: in some settings it is driven by the enormous dataset sizes, in others by model complexity or by real-time performance requirements. Making task-appropriate algorithm and platform choices for large-scale machine learning requires understanding the benefits, trade-offs and constraints of the available options. Solutions presented in the book cover a range of parallelization platforms from FPGAs and GPUs to multi-core systems and commodity clusters, concurrent programming frameworks including CUDA, MPI, MapReduce and DryadLINQ, and learning settings (supervised, unsupervised, semi-supervised and online learning). Extensive coverage of parallelization of boosted trees, SVMs, spectral clustering, belief propagation and other popular learning algorithms, and deep dives into several applications, make the book equally useful for researchers, students and practitioners.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book presents an integrated collection of representative approaches for scaling up machine learning and data mining methods on parallel and distributed computing platforms. Demand for parallelizing learning algorithms is highly task-specific: in some settings it is driven by the enormous dataset sizes, in others by model complexity or by real-time performance requirements. Making task-appropriate algorithm and platform choices for large-scale machine learning requires understanding the benefits, trade-offs and constraints of the available options. Solutions presented in the book cover a range of parallelization platforms from FPGAs and GPUs to multi-core systems and commodity clusters, concurrent programming frameworks including CUDA, MPI, MapReduce and DryadLINQ, and learning settings (supervised, unsupervised, semi-supervised and online learning). Extensive coverage of parallelization of boosted trees, SVMs, spectral clustering, belief propagation and other popular learning algorithms, and deep dives into several applications, make the book equally useful for researchers, students and practitioners.

More books from Cambridge University Press

Cover of the book Political Competition, Partisanship, and Policy Making in Latin American Public Utilities by
Cover of the book The Legacy of the French Revolutionary Wars by
Cover of the book The Soul of Nietzsche's Beyond Good and Evil by
Cover of the book A History of Modern Uganda by
Cover of the book The Arabs of the Ottoman Empire, 1516–1918 by
Cover of the book Radio-Frequency Electronics by
Cover of the book The Death Penalty on the Ballot by
Cover of the book Remarkable Engineers by
Cover of the book Professional Secrecy of Lawyers in Europe by
Cover of the book From Grammar to Meaning by
Cover of the book Global Warming Gridlock by
Cover of the book Graphene by
Cover of the book Controlling Administrative Power by
Cover of the book Making Markets in the Welfare State by
Cover of the book The Cambridge Handbook of English Corpus Linguistics by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy