Scaling up Machine Learning

Parallel and Distributed Approaches

Nonfiction, Computers, Advanced Computing, Engineering, Computer Vision, Artificial Intelligence, General Computing
Cover of the book Scaling up Machine Learning by , Cambridge University Press
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781139635578
Publisher: Cambridge University Press Publication: December 30, 2011
Imprint: Cambridge University Press Language: English
Author:
ISBN: 9781139635578
Publisher: Cambridge University Press
Publication: December 30, 2011
Imprint: Cambridge University Press
Language: English

This book presents an integrated collection of representative approaches for scaling up machine learning and data mining methods on parallel and distributed computing platforms. Demand for parallelizing learning algorithms is highly task-specific: in some settings it is driven by the enormous dataset sizes, in others by model complexity or by real-time performance requirements. Making task-appropriate algorithm and platform choices for large-scale machine learning requires understanding the benefits, trade-offs and constraints of the available options. Solutions presented in the book cover a range of parallelization platforms from FPGAs and GPUs to multi-core systems and commodity clusters, concurrent programming frameworks including CUDA, MPI, MapReduce and DryadLINQ, and learning settings (supervised, unsupervised, semi-supervised and online learning). Extensive coverage of parallelization of boosted trees, SVMs, spectral clustering, belief propagation and other popular learning algorithms, and deep dives into several applications, make the book equally useful for researchers, students and practitioners.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book presents an integrated collection of representative approaches for scaling up machine learning and data mining methods on parallel and distributed computing platforms. Demand for parallelizing learning algorithms is highly task-specific: in some settings it is driven by the enormous dataset sizes, in others by model complexity or by real-time performance requirements. Making task-appropriate algorithm and platform choices for large-scale machine learning requires understanding the benefits, trade-offs and constraints of the available options. Solutions presented in the book cover a range of parallelization platforms from FPGAs and GPUs to multi-core systems and commodity clusters, concurrent programming frameworks including CUDA, MPI, MapReduce and DryadLINQ, and learning settings (supervised, unsupervised, semi-supervised and online learning). Extensive coverage of parallelization of boosted trees, SVMs, spectral clustering, belief propagation and other popular learning algorithms, and deep dives into several applications, make the book equally useful for researchers, students and practitioners.

More books from Cambridge University Press

Cover of the book What Logics Mean by
Cover of the book Learning to Teach in the Secondary School by
Cover of the book Direct Democracy and the Courts by
Cover of the book Surveys in Combinatorics 2013 by
Cover of the book Discourse Analysis and Media Attitudes by
Cover of the book African History through Sources: Volume 1, Colonial Contexts and Everyday Experiences, c.1850–1946 by
Cover of the book Walking in Roman Culture by
Cover of the book Monoidal Topology by
Cover of the book Culture in Economics by
Cover of the book The Subject of Virtue by
Cover of the book Extractive Industries and Ape Conservation by
Cover of the book A History of the Japanese Language by
Cover of the book The New Cambridge Companion to Joseph Conrad by
Cover of the book The Shakespearean Stage Space by
Cover of the book Reading the Letters of Pliny the Younger by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy