Signaling-Mediated Control of Cell Division

From Oogenesis to Oocyte-to-Embryo Development

Nonfiction, Science & Nature, Science, Biological Sciences, Cytology
Cover of the book Signaling-Mediated Control of Cell Division by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319448206
Publisher: Springer International Publishing Publication: February 28, 2017
Imprint: Springer Language: English
Author:
ISBN: 9783319448206
Publisher: Springer International Publishing
Publication: February 28, 2017
Imprint: Springer
Language: English

This volume covers the current knowledge base on the role of signaling and environmental pathways that control the normal development of germline stem cells, meiotic progression of oocytes, events of oocyte maturation and fertilization, and the birth of an embryo.

Germ cells are uniquely poised to sustain life across generations through the fusion of oocyte and sperm. Because of the central importance of germ cells to life, much work has been dedicated to obtaining a clear understanding of the molecular and signaling events that control their formation and maintenance.  Germ cells are set aside from somatic cells in the embryo and go through specialized meiotic cell cycles as the animal matures. These cell cycles are interspersed with long periods of arrest. In human females, meiosis I is initiated in the fetus. At birth, oocytes are arrested in meiosis I; after puberty, every month an oocyte initiates meiosis II – ovulation. Upon sperm availability these cells are fertilized, generate an embryo, and the cycle-of-life continues. During meiotic I progression and arrest, the fitness of oocytes and their progeny are likely influenced by environmental cues and signaling pathways.

A lot of recent work has focused on understanding the mechanisms that regulate oocyte fitness and quality in humans and vertebrates. Much of our understanding on the events of meiosis I and germline stem cell populations comes from work in invertebrates, wherein the germline stem cells produce oocytes continuously through adult development. In both inverbrates and vertebrates nutritional and signaling pathways control the regulation of stem cells in such a manner so as to couple production of gametes with the nutritional availability. Additionally, mature oocytes arrest both in meiosis I and meiosis II, and signaling and nutritional pathways have been shown to regulate their formation, and maintenance, such that despite long periods of arrest, the oocyte quality is assured and errors in chromosome segregation and varied cytoplasmic events are minimal.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This volume covers the current knowledge base on the role of signaling and environmental pathways that control the normal development of germline stem cells, meiotic progression of oocytes, events of oocyte maturation and fertilization, and the birth of an embryo.

Germ cells are uniquely poised to sustain life across generations through the fusion of oocyte and sperm. Because of the central importance of germ cells to life, much work has been dedicated to obtaining a clear understanding of the molecular and signaling events that control their formation and maintenance.  Germ cells are set aside from somatic cells in the embryo and go through specialized meiotic cell cycles as the animal matures. These cell cycles are interspersed with long periods of arrest. In human females, meiosis I is initiated in the fetus. At birth, oocytes are arrested in meiosis I; after puberty, every month an oocyte initiates meiosis II – ovulation. Upon sperm availability these cells are fertilized, generate an embryo, and the cycle-of-life continues. During meiotic I progression and arrest, the fitness of oocytes and their progeny are likely influenced by environmental cues and signaling pathways.

A lot of recent work has focused on understanding the mechanisms that regulate oocyte fitness and quality in humans and vertebrates. Much of our understanding on the events of meiosis I and germline stem cell populations comes from work in invertebrates, wherein the germline stem cells produce oocytes continuously through adult development. In both inverbrates and vertebrates nutritional and signaling pathways control the regulation of stem cells in such a manner so as to couple production of gametes with the nutritional availability. Additionally, mature oocytes arrest both in meiosis I and meiosis II, and signaling and nutritional pathways have been shown to regulate their formation, and maintenance, such that despite long periods of arrest, the oocyte quality is assured and errors in chromosome segregation and varied cytoplasmic events are minimal.

More books from Springer International Publishing

Cover of the book The Use Case and Smart Grid Architecture Model Approach by
Cover of the book The Biblical Accommodation Debate in Germany by
Cover of the book Lung Cancer and Personalized Medicine: Novel Therapies and Clinical Management by
Cover of the book The 'Sailor Prince' in the Age of Empire by
Cover of the book Virtual, Augmented and Mixed Reality by
Cover of the book Evolutionary Computation in Combinatorial Optimization by
Cover of the book Nonlinear Elastic Waves in Materials by
Cover of the book Insurance Regulation in the European Union by
Cover of the book Computer Science and Engineering—Theory and Applications by
Cover of the book Emerging Research, Practice, and Policy on Computational Thinking by
Cover of the book Environmental Assessment of Lightweight Electric Vehicles by
Cover of the book Gentzen's Centenary by
Cover of the book Tracing Paradigms: One Hundred Years of Neophilologus by
Cover of the book Information Security Applications by
Cover of the book The Physiology of Microalgae by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy