Simulation-Driven Modeling and Optimization

ASDOM, Reykjavik, August 2014

Nonfiction, Science & Nature, Mathematics, Calculus, Applied
Cover of the book Simulation-Driven Modeling and Optimization by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319275178
Publisher: Springer International Publishing Publication: February 12, 2016
Imprint: Springer Language: English
Author:
ISBN: 9783319275178
Publisher: Springer International Publishing
Publication: February 12, 2016
Imprint: Springer
Language: English

This edited volume is devoted to the now-ubiquitous use of computational models across most disciplines of engineering and science, led by a trio of world-renowned researchers in the field. Focused on recent advances of modeling and optimization techniques aimed at handling computationally-expensive engineering problems involving simulation models, this book will be an invaluable resource for specialists (engineers, researchers, graduate students) working in areas as diverse as electrical engineering, mechanical and structural engineering, civil engineering, industrial engineering, hydrodynamics, aerospace engineering, microwave and antenna engineering, ocean science and climate modeling, and the automotive industry, where design processes are heavily based on CPU-heavy computer simulations. Various techniques, such as knowledge-based optimization, adjoint sensitivity techniques, and fast replacement models (to name just a few) are explored in-depth along with an array of the latest techniques to optimize the efficiency of the simulation-driven design process.

High-fidelity simulation models allow for accurate evaluations of the devices and systems, which is critical in the design process, especially to avoid costly prototyping stages. Despite this and other advantages, the use of simulation tools in the design process is quite challenging due to associated high computational cost. The steady increase of available computational resources does not always translate into the shortening of the design cycle because of the growing demand for higher accuracy and necessity to simulate larger and more complex systems. For this reason, automated simulation-driven design—while highly desirable—is difficult when using conventional numerical optimization routines which normally require a large number of system simulations, each one already expensive.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This edited volume is devoted to the now-ubiquitous use of computational models across most disciplines of engineering and science, led by a trio of world-renowned researchers in the field. Focused on recent advances of modeling and optimization techniques aimed at handling computationally-expensive engineering problems involving simulation models, this book will be an invaluable resource for specialists (engineers, researchers, graduate students) working in areas as diverse as electrical engineering, mechanical and structural engineering, civil engineering, industrial engineering, hydrodynamics, aerospace engineering, microwave and antenna engineering, ocean science and climate modeling, and the automotive industry, where design processes are heavily based on CPU-heavy computer simulations. Various techniques, such as knowledge-based optimization, adjoint sensitivity techniques, and fast replacement models (to name just a few) are explored in-depth along with an array of the latest techniques to optimize the efficiency of the simulation-driven design process.

High-fidelity simulation models allow for accurate evaluations of the devices and systems, which is critical in the design process, especially to avoid costly prototyping stages. Despite this and other advantages, the use of simulation tools in the design process is quite challenging due to associated high computational cost. The steady increase of available computational resources does not always translate into the shortening of the design cycle because of the growing demand for higher accuracy and necessity to simulate larger and more complex systems. For this reason, automated simulation-driven design—while highly desirable—is difficult when using conventional numerical optimization routines which normally require a large number of system simulations, each one already expensive.

More books from Springer International Publishing

Cover of the book Fault Diagnosis of Hybrid Dynamic and Complex Systems by
Cover of the book Atlas of Deep Endometriosis by
Cover of the book Challenges and Strategies in Teaching Linear Algebra by
Cover of the book Lake Victoria Fisheries Resources by
Cover of the book Nordic States and European Integration by
Cover of the book The Political Economy of a Living Wage by
Cover of the book Intracranial Pressure and Brain Monitoring XV by
Cover of the book Mathematics Teacher Preparation in Central America and the Caribbean by
Cover of the book Quinoxalines by
Cover of the book Graphene-Based Polymer Nanocomposites in Electronics by
Cover of the book Alliance Persistence within the Anglo-American Special Relationship by
Cover of the book Biennial Review of Infertility by
Cover of the book Service Life Prediction of Exterior Plastics by
Cover of the book Rethinking the Individualism-Holism Debate by
Cover of the book Computing in Research and Development in Africa by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy