Efficient Predictive Algorithms for Image Compression

Nonfiction, Science & Nature, Technology, Electronics, Circuits
Cover of the book Efficient Predictive Algorithms for Image Compression by Luís Filipe Rosário Lucas, Eduardo Antônio Barros da Silva, Sérgio Manuel Maciel de Faria, Nuno Miguel Morais Rodrigues, Carla Liberal Pagliari, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Luís Filipe Rosário Lucas, Eduardo Antônio Barros da Silva, Sérgio Manuel Maciel de Faria, Nuno Miguel Morais Rodrigues, Carla Liberal Pagliari ISBN: 9783319511801
Publisher: Springer International Publishing Publication: February 9, 2017
Imprint: Springer Language: English
Author: Luís Filipe Rosário Lucas, Eduardo Antônio Barros da Silva, Sérgio Manuel Maciel de Faria, Nuno Miguel Morais Rodrigues, Carla Liberal Pagliari
ISBN: 9783319511801
Publisher: Springer International Publishing
Publication: February 9, 2017
Imprint: Springer
Language: English

This book discusses efficient prediction techniques for the current state-of-the-art High Efficiency Video Coding (HEVC) standard, focusing on the compression of a wide range of video signals, such as 3D video, Light Fields and natural images. The authors begin with a review of the state-of-the-art predictive coding methods and compression technologies for both 2D and 3D multimedia contents, which provides a good starting point for new researchers in the field of image and video compression. New prediction techniques that go beyond the standardized compression technologies are then presented and discussed. In the context of 3D video, the authors describe a new predictive algorithm for the compression of depth maps, which combines intra-directional prediction, with flexible block partitioning and linear residue fitting. New approaches are described for the compression of Light Field and still images, which enforce sparsity constraints on linear models. The Locally Linear Embedding-based prediction method is investigated for compression of Light Field images based on the HEVC technology. A new linear prediction method using sparse constraints is also described, enabling improved coding performance of the HEVC standard, particularly for images with complex textures based on repeated structures. Finally, the authors present a new, generalized intra-prediction framework for the HEVC standard, which unifies the directional prediction methods used in the current video compression standards, with linear prediction methods using sparse constraints. Experimental results for the compression of natural images are provided, demonstrating the advantage of the unified prediction framework over the traditional directional prediction modes used in HEVC standard.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book discusses efficient prediction techniques for the current state-of-the-art High Efficiency Video Coding (HEVC) standard, focusing on the compression of a wide range of video signals, such as 3D video, Light Fields and natural images. The authors begin with a review of the state-of-the-art predictive coding methods and compression technologies for both 2D and 3D multimedia contents, which provides a good starting point for new researchers in the field of image and video compression. New prediction techniques that go beyond the standardized compression technologies are then presented and discussed. In the context of 3D video, the authors describe a new predictive algorithm for the compression of depth maps, which combines intra-directional prediction, with flexible block partitioning and linear residue fitting. New approaches are described for the compression of Light Field and still images, which enforce sparsity constraints on linear models. The Locally Linear Embedding-based prediction method is investigated for compression of Light Field images based on the HEVC technology. A new linear prediction method using sparse constraints is also described, enabling improved coding performance of the HEVC standard, particularly for images with complex textures based on repeated structures. Finally, the authors present a new, generalized intra-prediction framework for the HEVC standard, which unifies the directional prediction methods used in the current video compression standards, with linear prediction methods using sparse constraints. Experimental results for the compression of natural images are provided, demonstrating the advantage of the unified prediction framework over the traditional directional prediction modes used in HEVC standard.

More books from Springer International Publishing

Cover of the book Drug Treatment of Sleep Disorders by Luís Filipe Rosário Lucas, Eduardo Antônio Barros da Silva, Sérgio Manuel Maciel de Faria, Nuno Miguel Morais Rodrigues, Carla Liberal Pagliari
Cover of the book Clinical Application of Urologic Catheters, Devices and Products by Luís Filipe Rosário Lucas, Eduardo Antônio Barros da Silva, Sérgio Manuel Maciel de Faria, Nuno Miguel Morais Rodrigues, Carla Liberal Pagliari
Cover of the book Toxicity and Autophagy in Neurodegenerative Disorders by Luís Filipe Rosário Lucas, Eduardo Antônio Barros da Silva, Sérgio Manuel Maciel de Faria, Nuno Miguel Morais Rodrigues, Carla Liberal Pagliari
Cover of the book International Perspectives on Cyberbullying by Luís Filipe Rosário Lucas, Eduardo Antônio Barros da Silva, Sérgio Manuel Maciel de Faria, Nuno Miguel Morais Rodrigues, Carla Liberal Pagliari
Cover of the book Mathematics Teacher Preparation in Central America and the Caribbean by Luís Filipe Rosário Lucas, Eduardo Antônio Barros da Silva, Sérgio Manuel Maciel de Faria, Nuno Miguel Morais Rodrigues, Carla Liberal Pagliari
Cover of the book Gene Expression Systems in Fungi: Advancements and Applications by Luís Filipe Rosário Lucas, Eduardo Antônio Barros da Silva, Sérgio Manuel Maciel de Faria, Nuno Miguel Morais Rodrigues, Carla Liberal Pagliari
Cover of the book Advanced Robotics for Medical Rehabilitation by Luís Filipe Rosário Lucas, Eduardo Antônio Barros da Silva, Sérgio Manuel Maciel de Faria, Nuno Miguel Morais Rodrigues, Carla Liberal Pagliari
Cover of the book Learning and Collaboration Technologies. Learning and Teaching by Luís Filipe Rosário Lucas, Eduardo Antônio Barros da Silva, Sérgio Manuel Maciel de Faria, Nuno Miguel Morais Rodrigues, Carla Liberal Pagliari
Cover of the book Using Modeling to Predict and Prevent Victimization by Luís Filipe Rosário Lucas, Eduardo Antônio Barros da Silva, Sérgio Manuel Maciel de Faria, Nuno Miguel Morais Rodrigues, Carla Liberal Pagliari
Cover of the book The Myth of Mao Zedong and Modern Insurgency by Luís Filipe Rosário Lucas, Eduardo Antônio Barros da Silva, Sérgio Manuel Maciel de Faria, Nuno Miguel Morais Rodrigues, Carla Liberal Pagliari
Cover of the book Optimization of Behavioral, Biobehavioral, and Biomedical Interventions by Luís Filipe Rosário Lucas, Eduardo Antônio Barros da Silva, Sérgio Manuel Maciel de Faria, Nuno Miguel Morais Rodrigues, Carla Liberal Pagliari
Cover of the book Phenomenology of Space and Time by Luís Filipe Rosário Lucas, Eduardo Antônio Barros da Silva, Sérgio Manuel Maciel de Faria, Nuno Miguel Morais Rodrigues, Carla Liberal Pagliari
Cover of the book Sustainable Real Estate by Luís Filipe Rosário Lucas, Eduardo Antônio Barros da Silva, Sérgio Manuel Maciel de Faria, Nuno Miguel Morais Rodrigues, Carla Liberal Pagliari
Cover of the book Resisting Violence by Luís Filipe Rosário Lucas, Eduardo Antônio Barros da Silva, Sérgio Manuel Maciel de Faria, Nuno Miguel Morais Rodrigues, Carla Liberal Pagliari
Cover of the book The Emergence of Self in Educational Contexts by Luís Filipe Rosário Lucas, Eduardo Antônio Barros da Silva, Sérgio Manuel Maciel de Faria, Nuno Miguel Morais Rodrigues, Carla Liberal Pagliari
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy