Microbial Degradation of Xenobiotics

Nonfiction, Science & Nature, Science, Earth Sciences, Geology, Biological Sciences, Environmental Science
Cover of the book Microbial Degradation of Xenobiotics by , Springer Berlin Heidelberg
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783642237898
Publisher: Springer Berlin Heidelberg Publication: October 7, 2011
Imprint: Springer Language: English
Author:
ISBN: 9783642237898
Publisher: Springer Berlin Heidelberg
Publication: October 7, 2011
Imprint: Springer
Language: English

Our interest in the microbial biodegradation of xenobiotics has increased many folds in recent years to find out sustainable ways for environmental cleanup. Bioremediation and biotransformation processes harness the naturally occurring ability of microbes to degrade, transform or accumulate a wide range of organic pollutants. Major methodological breakthroughs in recent years through detailed genomic, metagenomic, proteomic, bioinformatic and other high-throughput analyses of environmentally relevant microorganisms have provided us unprecedented insights into key biodegradative pathways and the ability of organisms to adapt to changing environmental conditions. The degradation of a wide spectrum of organic pollutants and wastes discharged into the environment by anthropogenic activities is an emerging need today to promote sustainable development of our society with low environmental impact. Microbial processes play a major role in the removal of recalcitrant compounds taking advantage of the astonishing catabolic versatility of microorganisms to degrade or transform such compounds. New breakthroughs in sequencing, genomics, proteomics, bioinformatics and imaging are generating vital information which opens a new era providing new insights of metabolic and regulatory networks, as well as clues to the evolution of degradation pathways and to the molecular adaptation strategies to changing environmental conditions. Functional genomic and metagenomic approaches are increasing our understanding of the relative importance of different pathways and regulatory networks to carbon flux in particular environments and for particular compounds. New approaches will certainly accelerate the development of bioremediation technologies and biotransformation processes in coming years for natural attenuation of contaminated environments

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Our interest in the microbial biodegradation of xenobiotics has increased many folds in recent years to find out sustainable ways for environmental cleanup. Bioremediation and biotransformation processes harness the naturally occurring ability of microbes to degrade, transform or accumulate a wide range of organic pollutants. Major methodological breakthroughs in recent years through detailed genomic, metagenomic, proteomic, bioinformatic and other high-throughput analyses of environmentally relevant microorganisms have provided us unprecedented insights into key biodegradative pathways and the ability of organisms to adapt to changing environmental conditions. The degradation of a wide spectrum of organic pollutants and wastes discharged into the environment by anthropogenic activities is an emerging need today to promote sustainable development of our society with low environmental impact. Microbial processes play a major role in the removal of recalcitrant compounds taking advantage of the astonishing catabolic versatility of microorganisms to degrade or transform such compounds. New breakthroughs in sequencing, genomics, proteomics, bioinformatics and imaging are generating vital information which opens a new era providing new insights of metabolic and regulatory networks, as well as clues to the evolution of degradation pathways and to the molecular adaptation strategies to changing environmental conditions. Functional genomic and metagenomic approaches are increasing our understanding of the relative importance of different pathways and regulatory networks to carbon flux in particular environments and for particular compounds. New approaches will certainly accelerate the development of bioremediation technologies and biotransformation processes in coming years for natural attenuation of contaminated environments

More books from Springer Berlin Heidelberg

Cover of the book Reliability of Steel Columns Protected by Intumescent Coatings Subjected to Natural Fires by
Cover of the book Engineering Secure Two-Party Computation Protocols by
Cover of the book Strategisches Management von Fahrzeugflotten im öffentlichen Personenverkehr by
Cover of the book Software Quality and Software Testing in Internet Times by
Cover of the book Physik für Ingenieure by
Cover of the book Begleitung von Flüchtlingen mit traumatischen Erfahrungen by
Cover of the book Metal-Organic Frameworks for Photonics Applications by
Cover of the book Special Focus on the Biology of Aging by
Cover of the book Trustworthy Computing and Services by
Cover of the book Dynamics of Brain Edema by
Cover of the book Proceedings of the 2012 International Conference on Information Technology and Software Engineering by
Cover of the book Natural Zeolites by
Cover of the book Monitoring and Mitigation of Volcano Hazards by
Cover of the book Grid and Cloud Database Management by
Cover of the book Decompression — Decompression Sickness by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy