Unterrichtsstunde Mathematik: Die Fläche zwischen zwei Funktionsgraphen

Nonfiction, Reference & Language, Education & Teaching, Teaching, Teaching Methods
Cover of the book Unterrichtsstunde Mathematik: Die Fläche zwischen zwei Funktionsgraphen by Robert Leuck, GRIN Verlag
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Robert Leuck ISBN: 9783640528813
Publisher: GRIN Verlag Publication: February 5, 2010
Imprint: GRIN Verlag Language: German
Author: Robert Leuck
ISBN: 9783640528813
Publisher: GRIN Verlag
Publication: February 5, 2010
Imprint: GRIN Verlag
Language: German

Unterrichtsentwurf aus dem Jahr 2005 im Fachbereich Mathematik - Didaktik, Note: o.B., Humboldt-Universität zu Berlin (Mathematik), Sprache: Deutsch, Abstract: Einordnung des Themas Das Thema 'Die Fläche zwischen zwei Funktionsgraphen' ist dem Rahmenplanthema 'Einführung in die Integralrechnung' für die Jahrgangsstufe 12 zuzuordnen. Die Wahl des Themas ist jedoch nicht allein durch den Rahmenplan gerechtfertigt, sie lässt sich auch durch den hohen Anwendungs- und Praxisbezug legitimieren. Die Kenntnis zur Berechnung von Flächeninhalten wird in vielen Bereichen benötigt, so lassen sich beispielsweise viele Größen unter anderem in der Physik, der Chemie, der Biologie, der Statistik, der Wirtschaft als Flächen interpretieren. Darüber hinaus ist das Thema in besonderem Maße dazu geeignet, ein Problemlöseverhalten bei den Schülern zu entwickeln und zu fördern. Die Schüler können insbesondere angeregt werden, mit früher Gelerntem (Begriffe, Regeln) selbständig umzugehen, das heißt, es in neuen Situationen anzuwenden beziehungsweise es zum Aufbau neuer Begriffe und Regeln zu benutzen. Vorkenntnisse der Schüler Im Rahmen der Unterrichtssequenz 'Einführung in die Integralrechnung' sollten die geometrische Definition des Integrals, die wichtigsten Grundintegrale und die einfachsten Rechenregeln (Faktorregel, Summenregel, Integraladditivität) erarbeitet worden sein. Dadurch wird es möglich, Integrale für ganzrationale Funktionen als Integralfunktion bis höchstens 3. Grades zu berechnen und diese Kenntnisse beim Berechnen von Flächeninhalten von Flächen zwischen der x-Achse und dem Graphen einer Funktion anzuwenden. Die Berechnung von Flächeninhalten zwischen den Graphen zweier Funktionen, die im didaktischen Zentrum dieser Stunde steht, baut auf diese Vorkenntnisse der Schüler auf und setzt die systematische Betrachtung fort. Dieses strukturierte Vorgehen fördert dabei insbesondere auch das Lernen in Zusammenhängen (Integrationsprinzip).

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Unterrichtsentwurf aus dem Jahr 2005 im Fachbereich Mathematik - Didaktik, Note: o.B., Humboldt-Universität zu Berlin (Mathematik), Sprache: Deutsch, Abstract: Einordnung des Themas Das Thema 'Die Fläche zwischen zwei Funktionsgraphen' ist dem Rahmenplanthema 'Einführung in die Integralrechnung' für die Jahrgangsstufe 12 zuzuordnen. Die Wahl des Themas ist jedoch nicht allein durch den Rahmenplan gerechtfertigt, sie lässt sich auch durch den hohen Anwendungs- und Praxisbezug legitimieren. Die Kenntnis zur Berechnung von Flächeninhalten wird in vielen Bereichen benötigt, so lassen sich beispielsweise viele Größen unter anderem in der Physik, der Chemie, der Biologie, der Statistik, der Wirtschaft als Flächen interpretieren. Darüber hinaus ist das Thema in besonderem Maße dazu geeignet, ein Problemlöseverhalten bei den Schülern zu entwickeln und zu fördern. Die Schüler können insbesondere angeregt werden, mit früher Gelerntem (Begriffe, Regeln) selbständig umzugehen, das heißt, es in neuen Situationen anzuwenden beziehungsweise es zum Aufbau neuer Begriffe und Regeln zu benutzen. Vorkenntnisse der Schüler Im Rahmen der Unterrichtssequenz 'Einführung in die Integralrechnung' sollten die geometrische Definition des Integrals, die wichtigsten Grundintegrale und die einfachsten Rechenregeln (Faktorregel, Summenregel, Integraladditivität) erarbeitet worden sein. Dadurch wird es möglich, Integrale für ganzrationale Funktionen als Integralfunktion bis höchstens 3. Grades zu berechnen und diese Kenntnisse beim Berechnen von Flächeninhalten von Flächen zwischen der x-Achse und dem Graphen einer Funktion anzuwenden. Die Berechnung von Flächeninhalten zwischen den Graphen zweier Funktionen, die im didaktischen Zentrum dieser Stunde steht, baut auf diese Vorkenntnisse der Schüler auf und setzt die systematische Betrachtung fort. Dieses strukturierte Vorgehen fördert dabei insbesondere auch das Lernen in Zusammenhängen (Integrationsprinzip).

More books from GRIN Verlag

Cover of the book Die Grenzen der legitimen Machtausübung der Gesellschaft by Robert Leuck
Cover of the book 1 Tag in Deutschlands schönsten Städten by Robert Leuck
Cover of the book Präsenz messen. Vergleich der Telepräsenz-Studien von Kim/Biocca und Witmer/Singer by Robert Leuck
Cover of the book Mujeres Libres: Frauen in der Revolution - Der Aufschwung des libertären Feminismus während des Spanischen Bürgerkrieges by Robert Leuck
Cover of the book Medienkompetenz als gesellschaftliche und individuelle Schlüsselqualifikation am Beispiel der Entwicklung der Werbekompetenz bei Kindern by Robert Leuck
Cover of the book Implementierung einer Wissensdatenbank für IT-Projekte by Robert Leuck
Cover of the book Entstehung von Humor durch Lautmalerei im Computerspiel 'XIII' by Robert Leuck
Cover of the book Georg Büchner und die Rhetorik by Robert Leuck
Cover of the book Papsturkunden des Mittelalters und ihre Bedeutung für den Historiker by Robert Leuck
Cover of the book Der Zusammenhang von Maximalkraft und Schnellkraft bei der Übung Hanteltiefkniebeuge und verschiedenen Sprungtests by Robert Leuck
Cover of the book Übersetzungsauftrag und Übersetzungsstrategien by Robert Leuck
Cover of the book Zwischen Kausalität und Intention. Die sprachlichen Bedeutungskonzeptionen von Charles L. Stevenson und H. Paul Grice by Robert Leuck
Cover of the book Keith Haring, Wir hinterlassen unsere Spuren in der Schule by Robert Leuck
Cover of the book Ausdauertraining im Radsport: Die Entwicklung der Langzeitausdauerfähigkeit in Hinblick auf einen Mountainbikemarathon by Robert Leuck
Cover of the book Paulinus von Nola (Fontes Christiani 25, Teilband 2, S. 479 - 577) by Robert Leuck
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy